Abstract

The ability to produce a dense part of Al-based metal matrix nanocomposites using binder jetting followed by infiltration was investigated. A green density above 1.58 g/cm3 was determined to be necessary for spontaneous direct liquid infiltration to commence, and a press-compaction-assisted binder jetting process is needed to achieve this benchmark. A green density of 1.64 ± 0.02 g/cm3 only resulted in a density of 1.65 ± 0.03 g/cm3 by sintering at 1050 °C, which showed that densification is not possible with sintering alone. However, infiltration with Al-6061 produced specimens with a density of 2.74 ± 0.04 g/cm3, which corresponded to a density improvement of 65%. Moreover, the infiltrated specimens had a low open porosity of 2.71 ± 0.95% and a high hardness of 54 HRA. This study suggests that it is feasible to manufacture parts with complex shapes and superior mechanical properties using binder Jetting followed by infiltration.

References

1.
Chen
,
B.
,
Zhou
,
X. Y.
,
Zhang
,
B.
,
Kondoh
,
K.
,
Li
,
J. S.
, and
Qian
,
M.
,
2020
, “
Microstructure, Tensile Properties and Deformation Behaviors of Aluminium Metal Matrix Composites Co-Reinforced by Ex-Situ Carbon Nanotubes and In-Situ Alumina Nanoparticles
,”
Mater. Sci. Eng. A
,
795
, p.
139930
.
2.
Saba
,
F.
,
Zhang
,
F.
,
Liu
,
S.
, and
Liu
,
T.
,
2019
, “
Reinforcement Size Dependence of Mechanical Properties and Strengthening Mechanisms in Diamond Reinforced Titanium Metal Matrix Composites
,”
Composites, Part B
,
167
, pp.
7
19
.
3.
Tan
,
Z.
,
Li
,
J.
, and
Zhang
,
Z.
,
2021
, “
Experimental and Numerical Studies on Fabrication of Nanoparticle Reinforced Aluminum Matrix Composites by Friction Stir Additive Manufacturing
,”
J. Mater. Res. Technol.
,
12
, pp.
1898
1912
.
4.
Singh
,
M.
,
Bhandari
,
D.
, and
Goyal
,
K.
,
2020
, “
A Review of the Mechanical Performance of Nanoparticles Reinforced Aluminium Matrix Nanocomposites
,”
Mater. Today: Proc.
,
46
(
9
), pp.
3198
3204
.
5.
Ali
,
L. F.
,
Kuppuswamy
,
N.
,
Soundararajan
,
R.
,
Ramkumar
,
K. R.
, and
Sivasankaran
,
S.
,
2021
, “
Microstructural Evolutions and Mechanical Properties Enhancement of AA 6063 Alloy Reinforced with Tungsten (W) Nanoparticles Processed by Friction Stir Processing
,”
Mater. Charact.
,
172
, p.
110903
.
6.
Chen
,
L. Y.
,
Xu
,
J. Q.
,
Choi
,
H.
,
Pozuelo
,
M.
,
Ma
,
X.
,
Bhowmick
,
S.
,
Yang
,
J. M.
,
Mathaudhu
,
S.
, and
Li
,
X. C.
,
2015
, “
Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles
,”
Nature
,
528
, pp.
539
543
.
7.
Samal
,
P.
,
Vundavilli
,
P. R.
,
Meher
,
A.
, and
Mahapatra
,
M. M.
,
2020
, “
Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties
,”
J. Manuf. Processes
,
59
, pp.
131
152
.
8.
Chao
,
Q.
,
Mateti
,
S.
,
Annasamy
,
M.
,
Imran
,
M.
,
Joseph
,
J.
,
Cai
,
Q.
,
Li
,
L. H.
, et al.
,
2021
, “
Nanoparticle-Mediated Ultra Grain Refinement and Reinforcement in Additively Manufactured Titanium Alloys
,”
Addit. Manuf.
,
46
, p.
102173
.
9.
Zhang
,
Z.
, and
Chen
,
D. L.
,
2008
, “
Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites
,”
Mater. Sci. Eng. A
,
483–484
, pp.
148
152
.
10.
Porter
,
Q.
,
Li
,
X.
, and
Ma
,
C.
,
2021
, “
Pressing and Infiltration of Metal Matrix Nanocomposites
,”
J. Manuf. Mater. Process.
,
5
(
2
), pp.
54
.
11.
Ravi Kumar
,
K.
,
Kiran
,
K.
, and
Sreebalaji
,
V. S.
,
2017
, “
Micro Structural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide
,”
J. Alloys Compd.
,
723
, pp.
795
801
.
12.
Suresh
,
S.
,
Gowd
,
G. H.
, and
Devakumar
,
M. L. S.
,
2020
, “
Mechanical and Wear Characteristics of Aluminium Alloy 7075 Reinforced with Nano-Aluminium Oxide/ Magnesium Particles by Stir Casting Method
,”
Mater. Today: Proc.
,
24
(
2
), pp.
273
283
.
13.
Elsadek
,
A. A.
,
Gaafer
,
A.
, and
Lashin
,
A. M. A.
,
2017
, “
Prediction of Roughness and Tool Wear in Turning of Metal Matrix Nanocomposites
,”
J. Eng. Appl. Sci.
,
64
, pp.
387
408
.
14.
Hakami
,
F.
,
Pramanik
,
A.
, and
Basak
,
A. K.
,
2016
, “
Tool Wear and Surface Quality of Metal Matrix Composites Due to Machining: A Review
,”
Proc. Inst. Mech. Eng. B
,
231
(
5
), pp.
739
752
.
15.
Sivarupan
,
T.
,
Balasubramani
,
N.
,
Saxena
,
P.
,
Nagarajan
,
D.
,
El Mansori
,
M.
,
Salonitis
,
K.
,
Jolly
,
M.
, and
Dargusch
,
M. S.
,
2021
, “
A Review on the Progress and Challenges of Binder jet 3D Printing of Sand Moulds for Advanced Casting
,”
Addit. Manuf.
,
40
, pp.
101889
.
16.
Schubert
,
T.
,
Weißgärber
,
T.
,
Kieback
,
B.
,
Balzer
,
H.
,
Neubing
,
H. C.
,
Baum
,
U.
, and
Braun
,
R.
,
2005
, “
Aluminium PM ‘is a Challenge That Industry can Overcome’
,”
Met. Powder Rep.
,
60
, pp.
32
37
.
17.
Lin
,
T. C.
,
Cao
,
C.
,
Sokoluk
,
M.
,
Jiang
,
L.
,
Wang
,
X.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Li
,
X.
,
2019
, “
Aluminum With Dispersed Nanoparticles by Laser Additive Manufacturing
,”
Nat. Commun.
,
10
, p.
4124
.
18.
Yu
,
W. H.
,
Sing
,
S. L.
,
Chua
,
C. K.
,
Kuo
,
C. N.
, and
Tian
,
X. L.
,
2019
, “
Particle-Reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the art Review
,”
Prog. Mater. Sci.
,
104
, pp.
330
379
.
19.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-time Monitoring of Laser Powder bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction
,”
Sci. Rep.
,
7
, p.
3602
.
20.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications
,”
Mater. Today.
,
49
(
11
), pp.
271
295
.
21.
Lanfant
,
B.
,
Bar
,
F.
,
Mohanta
,
A.
, and
Leparoux
,
M.
,
2019
, “
Fabrication of Metal Matrix Composite by Laser Metal Deposition-a new Process Approach by Direct dry Injection of Nanopowders
,”
Materials
,
12
(
21
), p.
3584
.
22.
Hu
,
Y.
, and
Cong
,
W.
,
2018
, “
A Review on Laser Deposition-Additive Manufacturing of Ceramics and Ceramic Reinforced Metal Matrix Composites
,”
Ceram. Int.
,
44
(
17
), pp.
20599
20612
.
23.
Hu
,
Y.
,
Cong
,
W.
,
Wang
,
X.
,
Li
,
Y.
,
Ning
,
F.
, and
Wang
,
H.
,
2018
, “
Laser Deposition-Additive Manufacturing of Tib-Ti Composites With Novel Three-Dimensional Quasi-Continuous Network Microstructure: Effects on Strengthening and Toughening
,”
Composites, Part B
,
133
, pp.
91
100
.
24.
Ma
,
C.
,
Chen
,
L.
,
Cao
,
C.
, and
Li
,
X.
,
2017
, “
Nanoparticle-induced Unusual Melting and Solidification Behaviours of Metals
,”
Nat. Commun.
,
8
, p.
14178
.
25.
Li
,
M.
,
Fang
,
A.
,
Martinez-Franco
,
E.
,
Alvarado-Orozco
,
J. M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Selective Laser Melting of Metal Matrix Composites: Feedstock Powder Preparation by Electroless Plating
,”
Mater. Lett.
,
247
, pp.
115
118
.
26.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
.
27.
Du
,
W.
,
Ren
,
X.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
040801
.
28.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
.
29.
Mostafaei
,
A.
,
Elliott
,
A. M.
,
Barnes
,
J. E.
,
Li
,
F.
,
Tan
,
W.
,
Cramer
,
C. L.
,
Nandwana
,
P.
, and
Chmielus
,
M.
,
2021
, “
Binder jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges
,”
Prog. Mater. Sci.
,
119
, p.
100707
.
30.
Schaffer
,
G. B.
,
Sercombe
,
T. B.
, and
Lumley
,
R. N.
,
2001
, “
Liquid Phase Sintering of Aluminium Alloys
,”
Mater. Chem. Phys.
,
67
(
1–3
), pp.
85
91
.
31.
Awotunde
,
M. A.
,
Adegbenjo
,
A. O.
,
Obadele
,
B. A.
,
Okoro
,
M.
,
Shongwe
,
B. M.
, and
Olubambi
,
P. A.
,
2019
, “
Influence of Sintering Methods on the Mechanical Properties of Aluminium Nanocomposites Reinforced With Carbonaceous Compounds: A Review
,”
J. Mater. Res. Technol.
,
8
(
2
), pp.
2432
2449
.
32.
Cooke
,
R. W.
,
Hexemer
,
R. L.
,
Donaldson
,
I. W.
, and
Bishop
,
D. P.
,
2016
, “
Press-and-Sinter Processing of a PM Counterpart to Wrought Aluminum 2618
,”
J. Mater. Process. Technol.
,
230
, pp.
72
79
.
33.
Lv
,
X.
,
Ye
,
F.
,
Cheng
,
L.
,
Fan
,
S.
, and
Liu
,
Y.
,
2019
, “
Binder Jetting of Ceramics: Powders, Binders, Printing Parameters, Equipment, and Post-Treatment
,”
Ceram. Int.
,
45
(
10
), pp.
12609
12624
.
34.
Kajikawa
,
Y.
,
Nukami
,
T.
, and
Flemings
,
M. C.
,
1995
, “
Pressureless Infiltration of Aluminum Metal-Matrix Composites
,”
Metall. Mater. Trans. A
,
26
(
8
), pp.
2155
2159
.
35.
Niino
,
T.
, and
Sato
,
K.
,
2009
, “
Effect of Powder Compaction in Plastic Laser Sintering Fabrication
,”
International Solid Freeform Fabrication Symposium
.
36.
Yoo
,
J.
,
Cima
,
M.
,
Khanuja
,
S.
, and
Sachs
,
E. M.
,
1993
, “
Structural Ceramic Components by 3D Printing
,”
International Solid Freeform Fabrication Symposium
.
37.
Ziaee
,
M.
,
Hershman
,
R.
,
Mahmood
,
A.
, and
Crane
,
N. B.
,
2019
, “
Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS)
,”
J. Manuf. Mater. Process.
,
3
(
2
), p.
30
.
38.
Budding
,
A.
, and
Vaneker
,
T. H. J.
,
2013
, “
New Strategies for Powder Compaction in Powder-Based Rapid Prototyping Techniques
,”
Procedia CIRP
,
6
, pp.
527
532
.
39.
Khanuja
,
S.
,
1996
, “Origin and Control of Anisotropy in Three Dimensional Printing of Structural Ceramics,”
Ph.D. Dissertation
,
Massachusetts Institute of Technology
,
Cambridge, Massachusetts
.
40.
Balistreri
,
J.
,
Linder
,
J.
,
Linder
,
K. A.
,
Pugh
,
G.
, and
Bircher
,
W.
,
2019
, “
Three-dimensional (3D) Printing
,” U.S. Patent, Tethon Corporation.
41.
Rabinskiy
,
L. N.
,
Sitnikov
,
S. A.
,
Pogodin
,
V. A.
,
Ripetskiy
,
A. A.
, and
Solyaev
,
Y. O.
,
2017
, “
Binder Jetting of Si3N4 Ceramics With Different Porosity
,”
Solid State Phenom.
,
269
, pp.
37
50
. www.scientific.net/SSP.269.37
42.
Du
,
W.
,
Roa
,
J.
,
Hong
,
J.
,
Liu
,
Y.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091002
.
43.
2020
, “
Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Density and Apparent Porosity
,” International Organization for Standardization, (ISO 18754:2020).
44.
ASM Handbook Committee
,
1990
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
ASM International
.
You do not currently have access to this content.