Abstract

Rapid solidification techniques such as electron beam additive manufacturing are considered as promising pathways for manufacturing Nb-Si-based alloys for ultra-high-temperature applications. Here, we investigate the microstructure diversity of a series of Nb-Si-Ti alloys via electron beam surface melting (EBSM) to reveal their rapid solidification behaviors. Results show that the microstructural transition from coupled to divorced Nbss/Nb3Si eutectics can be triggered by increasing Si content. The formation of fully lamellar eutectics, evidenced by scanning transmission electron microscopy and atom probe tomography (APT), is achieved in the EBSM-processed Nb18Si20Ti alloy (at%), in contrast to the hypereutectic microstructures in arc-melted counterparts. The dendritic microstructures containing divorced eutectics are generated with a higher content of Si during rapid solidification. The transition from faceted to non-faceted growth of intermetallic Nb3Si occurs with the formation of primary Nb3Si dendrites. The interplay between eutectic and dendritic growths of silicides is discussed to provide insights for future alloy design and manufacture.

References

1.
Bewlay
,
B. P.
,
Jackson
,
M. R.
,
Subramanian
,
P. R.
, and
Zhao
,
J.
,
2003
, “
A Review of Very-High-Temperature Nb-Silicide-Based Composites
,”
Metall. Mater. Trans. A
,
34
(
10
), pp.
2043
2052
.
2.
He
,
J.
,
Guo
,
X.
, and
Qiao
,
Y.
,
2019
, “
Microstructure Evolution and hot Corrosion Behavior of Zr-Y Modified Silicide Coating Prepared by Two-Step Process
,”
Corros. Sci.
,
156
, pp.
44
57
.
3.
Guo
,
Y.
,
Jia
,
L.
,
Kong
,
B.
,
Peng
,
H.
, and
Zhang
,
H.
,
2017
, “
Heat Treatment Induced Phase Transition and Microstructural Evolution in Electron Beam Surface Melted Nb-Si Based Alloys
,”
Appl. Surf. Sci.
,
423
, pp.
417
420
.
4.
Shi
,
S.
,
Zhu
,
L.
,
Zhang
,
H.
, and
Sun
,
Z.
,
2016
, “
Toughening of α-Nb5Si3 by Ti
,”
J. Alloys Compd.
,
689
, pp.
296
301
.
5.
Xu
,
Z.
,
Utton
,
C.
, and
Tsakiropoulos
,
P.
,
2018
, “
A Study of the Effect of 2 at% Sn on the Microstructure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si-Based Alloys with Al and/or Cr Additions
,”
Materials
,
11
(
10
), p.
1826
.
6.
Guo
,
E.
,
Singh
,
S. S.
,
Kaira
,
C. S.
,
Meng
,
X.
,
Xu
,
Y.
,
Luo
,
L.
,
Wang
,
M.
, and
Chawla
,
N.
,
2017
, “
Mechanical Properties of Microconstituents in Nb-Si-Ti Alloy by Micropillar Compression and Nanoindentation
,”
Mater. Sci. Eng. A
,
687
, pp.
99
106
.
7.
Zhang
,
S.
, and
Guo
,
X.
,
2015
, “
Microstructural Characteristics of Nb–Si Based Ultrahigh Temperature Alloys with B and Hf Additions
,”
Intermetallics
,
64
, pp.
51
58
.
8.
Wang
,
Y.
,
Jia
,
L.
,
Sun
,
G.
,
Zhang
,
F.
,
Ye
,
C.
, and
Zhang
,
H.
,
2021
, “
Synchronous Improvement in Room-Temperature Fracture Toughness and High-Temperature Oxidation Resistance of Nb-Si Based Alloys with Erbium Addition
,”
Int. J. Refract. Met. Hard Mater.
,
94
, p.
105359
.
9.
Wang
,
N.
,
Jia
,
L.
,
Kong
,
B.
,
Guo
,
Y.
,
Zhang
,
H.
, and
Zhang
,
H.
,
2018
, “
Eutectic Evolution of Directionally Solidified Nb-Si Based Ultrahigh Temperature Alloys
,”
Int. J. Refract. Met. Hard Mater.
,
71
, pp.
273
279
.
10.
Guo
,
Y.
,
Jia
,
L.
,
Kong
,
B.
,
Zhang
,
F.
,
Liu
,
J.
, and
Zhang
,
H.
,
2017
, “
Improvement in the Oxidation Resistance of Nb-Si Based Alloy by Selective Laser Melting
,”
Corros. Sci.
,
127
, pp.
260
269
.
11.
Fei
,
T.
,
Yu
,
Y.
,
Zhou
,
C.
, and
Sha
,
J.
,
2017
, “
The Deformation and Fracture Modes of Fine and Coarsened NbSS Phase in a Nb-20Si-24Ti-2Al-2Cr Alloy with a NbSS/Nb5Si3 Microstructure
,”
Mater. Des.
,
116
, pp.
92
98
.
12.
Gu
,
D.
,
Cao
,
S.
, and
Lin
,
K.
,
2016
, “
Laser Metal Deposition Additive Manufacturing of TiC Reinforced Inconel 625 Composites: Influence of the Additive TiC Particle and Its Starting Size
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p. 041014.
13.
Guo
,
Y.
,
Liang
,
Y.
,
Lu
,
W.
,
Jia
,
L.
,
Li
,
Z.
,
Peng
,
H.
, and
Zhang
,
H.
,
2019
, “
Competitive Growth of Nano-Lamellae Nb/Nb3Si Eutectics with Enhanced Hardness and Toughness
,”
Appl. Surf. Sci.
,
486
, pp.
22
27
.
14.
Moura
,
I. T. L.
,
Silva
,
C. L. M.
,
Cheung
,
N.
,
Goulart
,
P. R.
,
Garcia
,
A.
, and
Spinelli
,
J. E.
,
2012
, “
Cellular to Dendritic Transition During Transient Solidification of a Eutectic Sn–0.7wt%Cu Solder Alloy
,”
Mater. Chem. Phys.
,
132
(
1
), pp.
203
209
.
15.
Kurz
,
W.
, and
Fisher
,
D. J.
,
1979
, “
Dendrite Growth in Eutectic Alloys: The Coupled Zone
,”
Int. Met. Rev.
,
24
(
1
), pp.
177
204
.
16.
Bertero
,
G. A.
,
Hofmeister
,
W. H.
, and
Robinson
,
M. B.
,
1991
, “
Containerless Processing and Rapid Solidification of Nb-Si Alloys in the Niobium-Rich Eutectic Range
,”
Metall. Mater. Trans. A
,
22
(
11
), pp.
2723
2732
.
17.
Gussone
,
J.
,
Bugelnig
,
K.
,
Barriobero-Vila
,
P.
,
Da Silva
,
J. C.
,
Hecht
,
U.
,
Dresbach
,
C.
,
Sket
,
F.
, et al
,
2020
, “
Ultrafine Eutectic Ti-Fe-Based Alloys Processed by Additive Manufacturing—A new Candidate for High Temperature Applications
,”
Appl. Mater. Today
,
20
, p.
100767
.
18.
Guo
,
Y.
,
Li
,
Z.
,
He
,
J.
,
Su
,
H.
,
Jia
,
L.
,
Zhang
,
J.
,
Liu
,
L.
, and
Zhang
,
H.
,
2020
, “
Surface Microstructure Modification of Hypereutectic Nb-Si Based Alloys to Improve Oxidation Resistance Without Damaging Fracture Toughness
,”
Mater. Charact.
,
159
, p.
110051
.
19.
Li
,
Y.
,
Zhu
,
W.
,
Li
,
Q.
,
Qiu
,
S.
, and
Zhang
,
J.
,
2017
, “
Phase Equilibria in the Nb–Ti Side of the Nb–Si–Ti System at 1200 °C and its Oxidation Behavior
,”
J. Alloys Compd.
,
704
, pp.
311
321
.
20.
Liu
,
D.
,
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
X.
, and
Liu
,
Y.
,
2017
, “
Effects of Composition and Growth Rate on the Microstructure Transformation of β-Rods/Lamellae/α-Rods in Directionally Solidified Mg-Li Alloy
,”
Mater. Des.
,
119
, pp.
199
207
.
21.
Tsakiropoulos
,
P.
,
2018
, “
Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-Silicide Based Alloys
,”
Materials
,
11
(
4
), p.
592
.
22.
Roehling
,
J. D.
,
Coughlin
,
D. R.
,
Gibbs
,
J. W.
,
Baldwin
,
J. K.
,
Mertens
,
J. C. E.
,
Campbell
,
G. H.
,
Clarke
,
A. J.
, and
McKeown
,
J. T.
,
2017
, “
Rapid Solidification Growth Mode Transitions in Al-Si Alloys by Dynamic Transmission Electron Microscopy
,”
Acta Mater.
,
131
, pp.
22
30
.
23.
Dorcheh
,
A. S.
,
Donner
,
W.
, and
Galetz
,
M. C.
,
2018
, “
From Eutectic to Peritectic: Effect of Ge on Morphology, Structure, and Coarsening of Cr-Cr3Si Alloys
,”
Intermetallics
,
93
, pp.
201
208
.
24.
Thompson
,
K.
,
Lawrence
,
D.
,
Larson
,
D. J.
,
Olson
,
J. D.
,
Kelly
,
T. F.
, and
Gorman
,
B.
,
2007
, “
In Situ Site-Specific Specimen Preparation for Atom Probe Tomography
,”
Ultramicroscopy
,
107
(
2
), pp.
131
139
.
25.
Knapp
,
G. L.
,
Raghavan
,
N.
,
Plotkowski
,
A.
, and
DebRoy
,
T.
,
2019
, “
Experiments and Simulations on Solidification Microstructure for Inconel 718 in Powder bed Fusion Electron Beam Additive Manufacturing
,”
Addit. Manuf.
,
25
, pp.
511
521
.
26.
Guo
,
Y.
,
Jia
,
L.
,
Sun
,
S.
,
Kong
,
B.
,
Liu
,
J.
, and
Zhang
,
H.
,
2016
, “
Rapid Fabrication of Nb-Si Based Alloy by Selective Laser Melting: Microstructure, Hardness and Initial Oxidation Behavior
,”
Mater. Des.
,
109
, pp.
37
46
.
27.
Grylls
,
R. J.
,
Bewlay
,
B. P.
,
Lipsitt
,
H. A.
, and
Fraser
,
H. L.
,
2001
, “
Characterization of Silicide Precipitates in Nb–Si and Nb–Ti–Si Alloys
,”
Philos. Mag. A
,
81
(
8
), pp.
1967
1978
.
28.
Izumi
, and
Momma
, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data.
29.
Zhang
,
S.
, and
Scheu
,
C.
,
2017
, “
Evaluation of EELS Spectrum Imaging Data by Spectral Components and Factors From Multivariate Analysis
,”
Microscopy
,
67
, pp.
i133
i141
.
30.
Zhan
,
Y.
,
Sun
,
Z.
,
Jiang
,
J.
,
Ma
,
J.
,
Zhang
,
X.
, and
Zhuang
,
Y.
,
2009
, “
The 773K Isothermal Section of the Ternary Phase Diagram of the Nb–Ti–Si System
,”
J. Alloys Compd.
,
468
(
1–2
), pp.
150
153
.
31.
Ma
,
X.
,
Guo
,
X.
,
Fu
,
M.
, and
Qiao
,
Y.
,
2016
, “
Precipitation and Martensitic Transformation of fcc-Ti in Nb–Ti–Si Based Ultrahigh Temperature Alloys
,”
Intermetallics
,
70
, pp.
17
23
.
32.
Koundinya
,
N. T. B. N.
, and
Kottada
,
R. S.
,
2021
, “
Synergetic Influence of Microconstituents on the Damage Accumulation and Consequent Effect on the Flow Behaviour in Cast Mg–Ca–Sn Alloys
,”
Mater. Sci. Eng. A
,
799
, p.
140167
.
33.
Miller
,
C.
,
Field
,
R.
, and
Kaufman
,
M.
,
2018
, “
Phase Stability of γ′-Ni2Cr and α-Cr in the Ni-Cr Binary
,”
Acta Mater.
,
157
, pp.
1
10
.
34.
Dantzig
,
J. A.
, and
Rappaz
,
M.
,
2009
,
Solidification
,
EPFL Press
,
Lausanne, Switzerland
.
35.
Zhu
,
M.
,
Zhang
,
L.
,
Zhao
,
H.
, and
Stefanescu
,
D. M.
,
2015
, “
Modeling of Microstructural Evolution During Divorced Eutectic Solidification of Spheroidal Graphite Irons
,”
Acta Mater.
,
84
, pp.
413
425
.
36.
Meschel
,
S. V.
, and
Kleppa
,
O. J.
,
1998
, “
Standard Enthalpies of Formation of Some 4d Transition Metal Silicides by High Temperature Direct Synthesis Calorimetry
,”
J. Alloys Compd.
,
274
(
1
), pp.
193
200
.
37.
Li
,
Y.
,
Miura
,
S.
,
Ohsasa
,
K.
,
Ma
,
C.
, and
Zhang
,
H.
,
2011
, “
Ultrahigh-Temperature Nbss/Nb5Si3 Fully-Lamellar Microstructure Developed by Directional Solidification in OFZ Furnace
,”
Intermetallics
,
19
(
4
), pp.
460
469
.
38.
Guo
,
Y.
,
He
,
J.
,
Li
,
Z.
,
Jia
,
L.
,
Su
,
H.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2020
, “
Tuning Microstructures and Improving Oxidation Resistance of Nb-Si Based Alloys via Electron Beam Surface Melting
,”
Corros. Sci.
,
163
, p.
108281
.
39.
Jian
,
Z.
,
Kuribayashi
,
K.
, and
Jie
,
W.
,
2004
, “
Critical Undercoolings for the Transition From the Lateral to Continuous Growth in Undercooled Silicon and Germanium
,”
Acta Mater.
,
52
(
11
), pp.
3323
3333
.
40.
Que
,
Z.
,
Wang
,
Y.
, and
Fan
,
Z.
,
2018
, “
Formation of the Fe-Containing Intermetallic Compounds During Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy
,”
Metall. Mater. Trans. A
,
49
(
6
), pp.
2173
2181
.
41.
Kang
,
D.
,
Zhang
,
T.
,
Jiang
,
C.
, and
Xu
,
H.
,
2018
, “
Preferred Orientation Transition Mechanism of Faceted-Growth Materials With FCC Structure: Competitive Advantage Depends on 3D Microstructure Morphologies
,”
J. Alloys Compd.
,
741
, pp.
14
20
.
42.
Plapp
,
M.
, and
Karma
,
A.
,
1999
, “
Eutectic Colony Formation: A Stability Analysis
,”
Phys. Rev. E
,
60
(
6
), pp.
6865
6889
.
43.
Liu
,
L. J.
,
Wei
,
X. X.
,
Ferry
,
M.
, and
Li
,
J. F.
,
2020
, “
Investigation of the Origin of Anomalous Eutectic Formation by Remelting Thin-Gauge Samples of an Ag-Cu Eutectic Alloy
,”
Scr. Mater.
,
174
, pp.
72
76
.
44.
Zhang
,
D.
,
Qiu
,
D.
,
Gibson
,
M. A.
,
Zheng
,
Y.
,
Fraser
,
H. L.
,
StJohn
,
D. H.
, and
Easton
,
M. A.
,
2019
, “
Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys
,”
Nature
,
576
(
7785
), pp.
91
95
.
45.
Liu
,
S.
,
Jie
,
J.
,
Guo
,
Z.
,
Yin
,
G.
,
Wang
,
T.
, and
Li
,
T.
,
2018
, “
Solidification Microstructure Evolution and Its Corresponding Mechanism of Metastable Immiscible Cu80Fe20 Alloy With Different Cooling Conditions
,”
J. Alloys Compd.
,
742
, pp.
99
106
.
46.
Li
,
C.
,
Wu
,
Y. Y.
,
Li
,
H.
, and
Liu
,
X. F.
,
2011
, “
Morphological Evolution and Growth Mechanism of Primary Mg2Si Phase in Al–Mg2Si Alloys
,”
Acta Mater.
,
59
(
3
), pp.
1058
1067
.
You do not currently have access to this content.