Abstract

In face milling process, the quality of surface texture is vital for mechanical performance of workpieces. The quality of surface texture, especially for waviness, is directly affected by tool marks, a commonly observed phenomenon in face milling. However, appropriate approaches for evaluation and modeling of tool marks are absent to date. Limited to the resolution as well as the efficiency of conventional measurement instruments, the height data of tool marks is hard to be entirely obtained, leading to valuable information omission. Besides, most existing models of tool marks are established for general workpieces with regular geometry and continuous surfaces. Since the cutter-workpiece engagement mode has a significant impact on the generation of tool marks, current models could be inaccurate or invalid when dealing with workpieces with discontinuous surfaces. To overcome this shortage, a novel approach is proposed in this research, aimed at quality improvement of surface texture in face milling of workpieces with discontinuous surfaces. First, the evaluation indexes for tool marks are defined based on the recently developed high definition metrology (HDM). Second, the physical modeling of tool marks is presented, taking the face milling mechanism into account. Third, the physical-informed optimization model is developed to search for the optimal processing parameters for surface quality improvement. At last, the effectiveness of the proposed approach is verified by a face milling experiment on the engine blocks.

References

1.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
,
1992
, “
Comprehensive Study of Parameters for Characterizing 3D Surface Topography I: Some Inherent Properties of Parameter Variation
,”
Wear
,
159
(
2
), pp.
161
171
.
2.
Wang
,
B.
,
Dong
,
X.
,
Wang
,
Z.
,
Wang
,
Y.
, and
Hou
,
Z.
,
2020
, “
The Humidity-Induced Sensitivity Amplification Effect in an Ionization Gas Sensor With Silicon Nanostructures
,”
IEEE Electron Device Lett.
,
41
(
6
), pp.
908
911
.
3.
Ryu
,
S. H.
,
Choi
,
D. K.
, and
Chu
,
C. N.
,
2006
, “
Roughness and Texture Generation on End Milled Surfaces
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
404
412
.
4.
Thompson
,
R. A.
,
1992
, “
On the Doubly Regenerative Stability of a Grinder: The Effect of Contact Stiffness and Wave Filtering
,”
ASME J. Manuf. Sci. Eng.
,
114
(
1
), pp.
53
60
.
5.
Mohandesi
,
J. A.
,
Rafiee
,
M. A.
,
Maffi
,
O.
, and
Saffarzadeh
,
P.
,
2007
, “
Dependence of the Yield and Fatigue Strength of the Thread Rolled Mild Steel on Dislocation Density
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
216
222
.
6.
Mohammadtabar
,
N.
,
Bakhshi-Jooybari
,
M.
,
Gorji
,
H.
,
Jamaati
,
R.
, and
Szpunar
,
J. A.
,
2021
, “
Effect of Electric Current Pulse Type on Springback, Microstructure, Texture, and Mechanical Properties During V-Bending of AA2024 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011004
.
7.
Yoo
,
S.
, and
Walczyk
,
D. F.
,
2007
, “
A Preliminary Study of Sealing and Heat Transfer Performance of Conformal Channels and Cooling Fins in Laminated Tooling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
388
399
.
8.
Wang
,
K.
,
Li
,
G.
,
Du
,
S.
,
Xi
,
L.
, and
Xia
,
T.
,
2021
, “
State Space Modelling of Variation Propagation in Multistage Machining Processes for Variable Stiffness Structure Workpieces
,”
Int. J. Prod. Res.
,
59
(
13
), pp.
4033
4052
.
9.
Blunt
,
L.
, and
Stout
,
K. J.
,
2000
,
Three-Dimensional Surface Topography
,
Penton
,
London
.
10.
Li
,
G.
,
Du
,
S.
,
Huang
,
D.
,
Zhao
,
C.
, and
Deng
,
Y.
,
2019
, “
Elastic Mechanics-Based Fixturing Scheme Optimization of Variable Stiffness Structure Workpieces for Surface Quality Improvement
,”
Precis. Eng.
,
56
, pp.
343
363
.
11.
Villa
,
A.
,
Rossetto
,
S.
, and
Levi
,
R.
,
1983
, “
Surface Texture and Machining Conditions. Part 1: Model Building Logic in View of Process Control
,”
ASME J. Eng. Ind.
,
105
(
4
), pp.
259
263
.
12.
Villa
,
A.
,
Rossetto
,
S.
, and
Levi
,
R.
,
1983
, “
Surface Texture and Machining Conditions. Part 2: Development of Mathematical Model Based Upon Pattern Recognition
,”
ASME J. Eng. Ind.
,
105
(
4
), pp.
264
269
.
13.
Hadad
,
M.
, and
Ramezani
,
M.
,
2016
, “
Modeling and Analysis of a Novel Approach in Machining and Structuring of Flat Surfaces Using Face Milling Process
,”
Int. J. Mach. Tools Manuf.
,
105
, pp.
32
44
.
14.
Salisbury
,
E. J.
,
Domala
,
K. V.
,
Moon
,
K. S.
,
Miller
,
M. H.
, and
Sutherland
,
J. W.
,
2001
, “
A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 1: Surface Generation Model
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
576
581
.
15.
Salisbury
,
E. J.
,
Domala
,
K. V.
,
Moon
,
K. S.
,
Miller
,
M. H.
, and
Sutherland
,
J. W.
,
2001
, “
A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Grinding Wheel Surface Texture Model
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
582
590
.
16.
Baek
,
D. K.
,
Ko
,
T. J.
, and
Kim
,
H. S.
,
1997
, “
A Dynamic Surface Roughness Model for Face Milling
,”
Precis. Eng.
,
20
(
3
), pp.
171
178
.
17.
Kiss
,
A. K.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2020
, “
Effects of Varying Dynamics of Flexible Workpieces in Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011005
.
18.
Shen
,
J.
,
Xu
,
P.
, and
Yu
,
Y.
,
2020
, “
Dynamic Characteristics Analysis and Finite Element Simulation of Steel-BFPC Machine Tool Joint Surface
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011006
.
19.
Batsch
,
M.
,
2020
, “
A Novel Method of Obtaining Honing Tool Profile for Machining Gears With Profile Modifications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091004
.
20.
Du
,
S.
, and
Xi
,
L.
,
2019
,
High Definition Metrology Based Surface Quality Control and Applications
,
Springer
,
Singapore
.
21.
Du
,
S.
,
Huang
,
D.
, and
Wang
,
H.
,
2015
, “
An Adaptive Support Vector Machine-Based Workpiece Surface Classification System Using High Definition Metrology
,”
IEEE Trans. Instrum. Meas.
,
64
(
10
), pp.
2590
2604
.
22.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
, and
Wu
,
Z.
,
2017
, “
A Systematic Approach for Online Minimizing Volume Difference of Multiple Chambers in Machining Processes Based on High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081003
.
23.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
,
Zhao
,
C.
, and
Deng
,
Y.
,
2018
, “
Detection and Monitoring of Defects on Three-Dimensional Curved Surfaces Based on High-Density Point Cloud Data
,”
Precis. Eng.
,
53
, pp.
79
95
.
24.
Du
,
S.
,
Liu
,
T.
,
Huang
,
D.
, and
Li
,
G.
,
2018
, “
A Fast and Adaptive Bi-Dimensional Empirical Mode Decomposition Approach for Filtering of Workpiece Surfaces Using High Definition Metrology
,”
J. Manuf. Syst.
,
46
, pp.
247
263
.
25.
Shao
,
Y.
,
Wang
,
K.
,
Du
,
S.
, and
Xi
,
L.
,
2018
, “
High Definition Metrology Enabled Three Dimensional Discontinuous Surface Filtering by Extended Tetrolet Transform
,”
J. Manuf. Syst.
,
49
, pp.
75
92
.
26.
Shi
,
J.
,
Cao
,
H.
,
Maroju
,
N. K.
, and
Jin
,
X.
,
2020
, “
Dynamic Modeling of Aerostatic Spindle With Shaft Tilt Deformation
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021006
.
27.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
28.
Yin
,
Y.
,
Shao
,
Y.
,
Wang
,
K.
,
Du
,
S.
, and
Xi
,
L.
,
2020
, “
Segmentation of Workpiece Surfaces With Tool Marks Based on High Definition Metrology
,”
J. Manuf. Processes
,
57
, pp.
268
287
.
29.
Shao
,
Y.
,
Yin
,
Y.
,
Du
,
S.
,
Xia
,
T.
, and
Xi
,
L.
,
2018
, “
Leakage Monitoring in Static Sealing Interface Based on Three Dimensional Surface Topography Indicator
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101003
.
30.
Ren
,
J.
, and
Wang
,
H.
,
2018
, “
Surface Variation Modeling by Fusing Multi-Resolution Spatially Nonstationary Data Under a Transfer Learning Framework
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011002
.
31.
Wang
,
B.
,
Dong
,
X.
,
Wang
,
Z.
,
Wang
,
Y.
, and
Hou
,
Z.
,
2020
, “
MEMS-Based Ionization Gas Sensors for VOCs With Array of Nanostructured Silicon Needles
,”
ACS Sens.
,
5
(
4
), pp.
994
1101
.
32.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2013
, “
Characterization of Cutting Force Induced Surface Shape Variation Using High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041014
.
33.
Lu
,
H. S.
,
Chang
,
C. K.
,
Hwang
,
N. C.
, and
Chung
,
C. T.
,
2009
, “
Grey Relational Analysis Coupled With Principal Component Analysis for Optimization Design of the Cutting Parameters in High-Speed End Milling
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3808
3817
.
34.
Mukherjee
,
I.
, and
Ray
,
P. K.
,
2006
, “
A Review of Optimization Techniques in Metal Cutting Processes
,”
Comput. Ind. Eng.
,
50
(
1–2
), pp.
15
34
.
35.
Wang
,
H.
,
Suriano
,
S.
,
Zhou
,
L.
, and
Hu
,
S. J.
,
2009
, “
High-Definition Metrology Based Spatial Variation Pattern Analysis for Machining Process Monitoring and Diagnosis
,”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
Oct. 4–7
, Vol. 2, pp.
471
480
.
36.
Suriano
,
S.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2012
, “
Sequential Monitoring of Surface Spatial Variation in Automotive Machining Processes Based on High Definition Metrology
,”
J. Manuf. Syst.
,
31
(
1
), pp.
8
14
.
37.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2011
, “
Improvement of Surface Flatness in Face Milling Based on 3-D Holographic Laser Metrology
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
483
490
.
38.
Zhou
,
L.
,
Wang
,
H.
,
Berry
,
C.
,
Weng
,
X.
, and
Hu
,
S. J.
,
2011
, “
Functional Morphing in Multistage Manufacturing and Its Applications in High-Definition Metrology-Based Process Control
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
1
), pp.
124
136
.
39.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2014
, “
Modeling Cutter Tilt and Cutter-Spindle Stiffness for Machine Condition Monitoring in Face Milling Using High-Definition Surface Metrology
,”
Int. J. Adv. Manuf. Technol.
,
70
, pp.
1323
1335
.
40.
Deb
,
K.
,
Pratap
A.
,
Agarwal
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
41.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.
42.
Liu
,
Q.
,
Tian
,
Y.
,
Wang
,
C.
,
Chekem
,
F. O.
, and
Sutherland
,
J.
,
2018
, “
Flexible Job-Shop Scheduling for Reduced Manufacturing Carbon Footprint
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061006
.
43.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration Part 61: Linear Areal Filters: Gaussian Filters,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 16610-61:2015 .
44.
Wang
,
M.
,
Ken
,
T.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031006
.
45.
ISO
,
2012
, “Geometrical Product Specifications (GPS)-Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 25178-2:2012 .
46.
ISO
,
2015
, “Geometrical Product Specifications (GPS)-Filtration Part 40: Morphological Profile Filters: Basic Concepts,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 16610-40:2015 .
47.
ISO
,
2015
, “
Geometrical Product Specifications (GPS)-Filtration Part 85: Morphological Areal Filters: Segmentation
,”
International Organization for Standardization
, Geneva, Switzerland, Standard No. ISO 16610-85:2015 .
48.
Schmitz
,
T. L.
,
Couey
,
J.
,
Marshb
,
E.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2006
, “
Runout Effects in Milling: Surface Finish, Surface Location Error and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
.
49.
Kline
,
W. A.
, and
Devor
,
R. E.
,
1983
, “
The Effect of Runout on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2–3
), pp.
123
140
.
50.
Smith
,
G. T.
,
2008
,
Cutting Tool Technology Industrial Handbook
,
Springer
,
London
.
51.
Liu
,
S.
,
Jin
,
S.
,
Zhang
,
X.
,
Chen
,
K.
,
Tian
,
A.
, and
Xi
,
L.
,
2019
, “
A Coupled Model for the Prediction of Surface Variation in Face Milling Large-Scale Workpiece With Complex Geometry
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031009
.
52.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
1997
,
Metal Cutting Theory and Practice Manufacturing
,
CRC Press
,
New York
.
53.
Liao
,
Y.
,
Stephenson
,
D. A.
, and
Ni
,
J.
,
2010
, “
A Multifeature Approach to Tool Wear Estimation Using 3D Workpiece Surface Texture Parameters
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061008
.
54.
Smith
,
S.
, and
Tlusty
,
J.
,
1993
, “
Efficient Simulation Programs for Chatter in Milling
,”
CIRP Ann.
,
42
(
1
), pp.
463
466
.
55.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
56.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tool Manuf.
,
50
(
5
), pp.
502
509
.
57.
Wan
,
M.
,
Pan
,
W.-J.
,
Zhang
,
W.-H.
,
Ma
,
Y.-C.
, and
Yang
,
Y.
,
2014
, “
A Unified Instantaneous Cutting Force Model for Flat End Mills With Variable Geometries
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
641
650
.
58.
Li
,
G.
,
Du
,
S.
,
Huang
,
D.
,
Zhao
,
C.
, and
Deng
,
Y.
,
2019
, “
Dynamics Modeling-Based Optimization of Process Parameters in Face Milling of Workpieces With Discontinuous Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101009
.
59.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tool Manuf.
,
52
(
1
), pp.
50
58
.
60.
Zain
,
A. M.
,
Haron
,
H.
, and
Sharif
,
S.
,
2010
, “
Prediction of Surface Roughness in the End Milling Machining Using Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
2
), pp.
1755
1768
.
61.
Vivancos
,
J.
,
Luis
,
C.
,
Costa
,
L.
, and
Ortiz
,
J.
,
2004
, “
Optimal Machining Parameters Selection in High Speed Milling of Hardened Steels for Injection Moulds
,”
J. Mater. Process. Technol.
,
155
(
1
), pp.
1505
1512
.
62.
Franco
,
P.
,
Estrems
,
M.
, and
Faura
,
F.
,
2008
, “
A Study of Back Cutting Surface Finish From Tool Errors and Machine Tool Deviations During Face Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
112
123
.
63.
Franco
,
P.
,
Estrems
,
M.
, and
Faura
,
F.
,
2004
, “
Influence of Radial and Axial Runouts on Surface Roughness in Face Milling With Round Insert Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1555
1565
.
64.
Svetlik
,
M.
,
Radojicic
,
M.
,
Radovic
,
S.
, and
Simic-Muller
,
K.
,
2018
, “
Justifying Euler's Formula Through Motion in a Plane
,”
Math. Enthus.
,
15
(
3
), pp.
397
406
.
You do not currently have access to this content.