Abstract

In the present work, the effects of laser surfacing aiming at modifying the surface roughness on NiTi sheets prior to the application of ultrasonic welding (USW) were investigated. Three different configurations joining original and laser surfaced specimens were performed: original/original (referred as O/O), original/treated (referred as O/T), and treated/treated (referred as T/T). The influence of surface roughness on the interface formation, diffusion, and mechanical properties was investigated. It is observed that when both bonding surfaces becomes rougher (T/T configuration), the joint strength is the highest, followed by both smooth bonding surfaces (O/O configuration), and the strength of the joint is the lowest when only one of the bonding surfaces was roughened (O/T configuration), which is related to the degree of plastic deformation at the joining interface. The main joining mechanism of NiTi to the Al interlayer was a metallic bonding caused by shear plastic deformation and formation and growth of micro welds at the joining interfaces. Laser surfacing facilitates the metallic bonding, which is directly reflected in the change of the thickness of the Al interlayer after USW. This also helps to produce a mechanical interlocking at the interface, although there is no significant difference in the elemental diffusion. Interfacial failure occurred in all joints tested under different surface contact conditions and exhibited ductile-like fracture characteristics.

References

1.
Mohan
,
S.
, and
Banerjee
,
A.
,
2021
, “
Modelling of Minor Hysteresis Loop of Shape Memory Alloy Wire Actuator and Its Application in Self-Sensing
,”
Smart Mater. Struct.
,
30
(
5
), p.
055011
.
2.
Oliveira
,
J. P.
,
Miranda
,
R. M.
, and
Braz Fernandes
,
F. M.
,
2017
, “
Welding and Joining of NiTi Shape Memory Alloys: A Review
,”
Prog. Mater. Sci.
,
88
, pp.
412
466
.
3.
Zeng
,
Z.
,
Yang
,
M.
,
Oliveira
,
J. P.
,
Song
,
D.
, and
Peng
,
B.
,
2016
, “
Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications
,”
Smart Mater Struct.
,
25
(
8
), p.
085001
.
4.
Oliveira
,
J. P.
,
Braz Fernandes
,
F. M.
,
Miranda
,
R. M.
,
Schell
,
N.
, and
Ocaña
,
J. L.
,
2016
, “
Effect of Laser Welding Parameters on the Austenite and Martensite Phase Fractions of NiTi
,”
Mater Charact.
,
119
, pp.
148
151
.
5.
Nematollahi
,
M.
,
Safaei
,
K.
,
Bayati
,
P.
, and
Elahinia
,
M.
,
2021
, “
Functionally Graded NiTi Shape Memory Alloy: Selective Laser Melting Fabrication and Multi-Scale Characterization
,”
Mater. Lett.
,
292
, p.
129648
.
6.
Zhang
,
Y.
,
Yang
,
Y.
,
Zhang
,
W.
, and
Suck-Joo
,
N.
,
2020
, “
Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110816
.
7.
Ao
,
S. S.
,
Li
,
C. J.
,
Zhang
,
W.
,
Wu
,
M. P.
,
Dai
,
Y.
,
Chen
,
Y.
, and
Luo
,
Z.
,
2019
, “
Microstructure Evolution and Mechanical Properties of Al/Cu Ultrasonic Spot Welded Joints During Thermal Processing
,”
J. Manuf. Process.
,
41
, pp.
307
314
.
8.
Dhara
,
S.
, and
Das
,
A.
,
2020
, “
Impact of Ultrasonic Welding on Multi-Layered Al–Cu Joint for Electric Vehicle Battery Applications: A Layer-wise Microstructural Analysis
,”
Mater. Sci. Eng., A
,
791
, p.
139795
.
9.
Ward
,
A. A.
,
Zhang
,
Y.
, and
Cordero
,
Z. C.
,
2018
, “
Junction Growth in Ultrasonic Spot Welding and Ultrasonic Additive Manufacturing
,”
Acta Mater.
,
158
, pp.
393
406
.
10.
Mohammed
,
S. M. A. K.
,
Jaya
,
Y. D.
,
Albedah
,
A.
,
Jiang
,
X. Q.
,
Li
,
D. Y.
, and
Chen
,
D. L.
,
2020
, “
Ultrasonic Spot Welding of a Clad 7075 Aluminum Alloy: Strength and Fatigue Life
,”
Int. J. Fatigue
,
141
, p.
105869
.
11.
Zhao
,
T.
,
Zhao
,
Q. Y.
,
Wu
,
W. W.
,
Xi
,
L.
,
Li
,
Y.
,
Wan
,
Z. S.
,
Villegas
,
I. F.
, and
Benedictus
,
R.
,
2021
, “
Enhancing Weld Attributes in Ultrasonic Spot Welding of Carbon Fibre-Reinforced Thermoplastic Composites: Effect of Sonotrode Configurations and Process Control
,”
Composites, Part B
,
211
, p.
108648
.
12.
Li
,
Y.
,
Liu
,
Z.
,
Shen
,
J.
,
Lee
,
T. H.
,
Banu
,
M.
, and
Hu
,
S. J.
,
2019
, “
Weld Quality Prediction in Ultrasonic Welding of Carbon Fiber Composite Based on an Ultrasonic Wave Transmission Model
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081010
.
13.
Lee
,
E.
,
Fan
,
H.
,
Li
,
Y.
,
Shriver
,
D.
,
Arinez
,
J.
,
Xiao
,
G.
, and
Banu
,
M.
,
2020
, “
Enhanced Performance of Ultrasonic Welding of Short Carbon Fiber Polymer Composites Through Control of Morphological Parameters
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011009
.
14.
Guo
,
W.
,
Jin
,
J.
, and
Hu
,
S. J.
,
2019
, “
Profile Monitoring and Fault Diagnosis Via Sensor Fusion for Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081001
.
15.
Li
,
C.
,
Ao
,
S.
,
Oliveira
,
J. P.
,
Cheng
,
M.
,
Zeng
,
Z.
,
Cui
,
H.
, and
Luo
,
Z.
,
2020
, “
Ultrasonic Spot Welded NiTi Joints Using an Aluminum Interlayer: Microstructure and Mechanical Behavior
,”
J. Manuf. Process.
,
56
, pp.
1201
1210
.
16.
Shimizu
,
S.
,
Fujii
,
H. T.
,
Sato
,
Y. S.
,
Kokawa
,
H.
,
Sriraman
,
M. R.
, and
Babu
,
S. S.
,
2014
, “
Mechanism of Weld Formation During Very-High-Power Ultrasonic Additive Manufacturing of Al Alloy 6061
,”
Acta Mater.
,
74
, pp.
234
243
.
17.
Haddadi
,
F.
,
2016
, “
Microstructure Reaction Control of Dissimilar Automotive Aluminium to Galvanized Steel Sheets Ultrasonic Spot Welding
,”
Mater. Sci. Eng., A
,
678
, pp.
72
84
.
18.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Li
,
C. J.
,
Zeng
,
Z.
,
Wang
,
A. Q.
, and
Luo
,
Z.
,
2020
, “
On the Metallurgical Joining Mechanism During Ultrasonic Spot Welding of NiTi Using a Cu Interlayer
,”
Scr. Mater.
,
178
, pp.
414
417
.
19.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Luo
,
Z.
, and
Hao
,
Z. Z.
,
2018
, “
Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys
,”
Smart Mater Struct.
,
27
(
8
), pp.
1
6
.
20.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Huang
,
Y. F.
, and
Luo
,
Z.
,
2018
, “
Microstructural Characterization and Mechanical Behavior of NiTi Shape Memory Alloys Ultrasonic Joints Using Cu Interlayer
,”
Materials
,
11
(
10
), pp.
1830
1843
.
21.
Ao
,
S.
,
Zhang
,
W.
,
Li
,
C.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
, and
Luo
,
Z.
,
2021
, “
Variable-Parameter Ultrasonic Spot Welded NiTi Joints With Cu Interlayer
,”
Mater. Manuf. Processes.
,
36
(
5
), pp.
599
607
.
22.
Li
,
C.
,
Ao
,
S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Cui
,
H.
, and
Luo
,
Z.
,
2020
, “
Effects of Post-Weld Heat Treatment on the Phase Transformation and Mechanical Behavior of NiTi Ultrasonic Spot Welded Joints With Al Interlayer
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101006
.
23.
Friel
,
R. J.
,
Johnson
,
K. E.
,
Dickens
,
P. M.
, and
Harris
,
R. A.
,
2010
, “
The Effect of Interface Topography for Ultrasonic Consolidation of Aluminium
,”
Mater. Sci. Eng., A
,
527
(
16–17
), pp.
4474
4483
.
24.
Wagner
,
G.
,
Balle
,
F.
, and
Eifler
,
D.
,
2013
, “
Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers
,”
Adv. Eng. Mater.
,
15
(
9
), pp.
792
803
.
25.
Lin
,
J.-Y.
,
Nambu
,
S.
,
Pongmorakot
,
K.
, and
Koseki
,
T.
,
2019
, “
Effect of Surface Roughness on Bonding Interface Formation of Steel and Ni by Ultrasonic Welding
,”
Sci. Technol. Weld. Joining
,
25
(
2
), pp.
157
163
.
26.
Huang
,
H.
,
Chen
,
J.
,
Cheng
,
J.
,
Lim
,
Y. C.
,
Hu
,
X.
,
Feng
,
Z.
, and
Sun
,
X.
,
2020
, “
Surface Engineering to Enhance Heat Generation and Joint Strength in Dissimilar Materials AZ31 and DP590 Ultrasonic Welding
,”
Int. J. Adv. Des. Manuf. Technol.
,
111
(
11–12
), pp.
3095
3109
.
27.
Zhang
,
G.
,
Hua
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
,
Li
,
F.
,
Shen
,
C.
, and
Cheng
,
J.
,
2020
, “
Investigation on Mechanism of Oxide Removal and Plasma Behavior During Laser Cleaning on Aluminum Alloy
,”
Appl. Surf. Sci.
,
506
, p.
144666
.
28.
Kumara
,
A.
,
Sapp
,
M.
,
Vincelli
,
J.
, and
Gupta
,
M. C.
,
2010
, “
A Study on Laser Cleaning and Pulsed Gas Tungsten Arc Welding of Ti–3Al–2.5 V Alloy Tubes
,”
J. Mater. Process Technol.
,
210
(
1
), pp.
64
71
.
29.
Wang
,
H.
,
Kalchev
,
Y.
,
Wang
,
H.
,
Yan
,
K.
,
Gurevich
,
E. L.
, and
Ostendorf
,
A.
,
2020
, “
Surface Modification of NiTi Alloy by Ultrashort Pulsed Laser Shock Peening
,”
Surf. Coat. Technol.
,
394
, p.
125899
.
30.
Mirza
,
F. A.
,
Macwan
,
A.
,
Bhole
,
S. D.
,
Chen
,
D. L.
, and
Chen
,
X. G.
,
2017
, “
Microstructure, Tensile and Fatigue Properties of Ultrasonic Spot Welded Aluminum to Galvanized High-Strength-Low-Alloy and Low-Carbon Steel Sheets
,”
Mater. Sci. Eng., A
,
690
(
6
), pp.
323
336
.
31.
Gunduz
,
I. E.
,
Ando
,
T.
,
Shattuck
,
E.
,
Wong
,
P. Y.
, and
Doumanidis
,
C. C.
,
2005
, “
Enhanced Diffusion and Phase Transformations During Ultrasonic Welding of Zinc and Aluminum
,”
Scr. Mater.
,
52
(
9
), pp.
939
943
.
32.
Yang
,
J. W.
,
Zhang
,
J.
, and
Qiao
,
J.
,
2019
, “
Molecular Dynamics Simulations of Atomic Diffusion During the Al-Cu Ultrasonic Welding Process
,”
Materials
,
12
(
14
), p.
2306
.
33.
Balasundaram
,
R.
,
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2014
, “
Effect of Zinc Interlayer on Ultrasonic Spot Welded Aluminum-to-Copper Joints
,”
Mater. Sci. Eng., A
,
607
, pp.
277
286
.
34.
Peng
,
H.
,
Chen
,
D. L.
,
Bai
,
X. F.
,
Wang
,
P. Q.
,
Li
,
D. Y.
, and
Jiang
,
X. Q.
,
2020
, “
Microstructure and Mechanical Properties of Mg-to-Al Dissimilar Welded Joints With an Ag Interlayer Using Ultrasonic Spot Welding
,”
J. Magnesium Alloys
,
8
(
2
), pp.
552
563
.
35.
Peng
,
H.
,
Chen
,
D. L.
,
Bai
,
X. F.
,
She
,
X. W.
,
Li
,
D. Y.
, and
Jiang
,
X. Q.
,
2019
, “
Ultrasonic Spot Welding of Magnesium-to-Aluminum Alloys With a Copper Interlayer: Microstructural Evolution and Tensile Properties
,”
J. Manuf. Process.
,
37
, pp.
97
100
.
36.
Hehr
,
A.
, and
Dapino
,
M. J.
,
2015
, “
Interfacial Shear Strength Estimates of NiTi-Al Matrix Composites Fabricated via Ultrasonic Additive Manufacturing
,”
Composites, Part B
,
77
, pp.
199
208
.
37.
Hahnlen
,
R.
, and
Dapino
,
M. J.
,
2014
, “
NiTi–Al Interface Strength in Ultrasonic Additive Manufacturing Composites
,”
Composites, Part B
,
59
, pp.
101
108
.
38.
Liu
,
Z.
,
Li
,
Y.
,
Wang
,
Y.
,
Kannatey-Asibu
,
E.
, and
Epureanu
,
B. I.
,
2019
, “
Nonlinear Dynamics of Friction Heating in Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061011
.
39.
Hung
,
J. C.
, and
Lin
,
C. C.
,
2013
, “
Investigations on the Material Property Changes of Ultrasonic-Vibration Assisted Aluminum Alloy Upsetting
,”
Mater. Des.
,
45
, pp.
412
420
.
40.
Dutta
,
R. K.
,
Petrov
,
R. H.
,
Delhez
,
R.
,
Hermans
,
M. J. M.
,
Richardson
,
I. M.
, and
Böttger
,
A. J.
,
2013
, “
The Effect of Tensile Deformation by in Situ Ultrasonic Treatment on the Microstructure of Low-Carbon Steel
,”
Acta Mater.
,
61
(
5
), pp.
1592
1602
.
You do not currently have access to this content.