Abstract

Coaxial extrusion is a commonly used process to manufacture tubular structures to mimic vascular systems in 3D bioprinting. In this study, the stability of coaxial extrusion of a non-Newtonian material, Pluronic F127, is investigated. The extrusion process is considered stable when the extrudate form a core-annular structure. When it is unstable, dripping or jetting of the inner fluid is observed. In this study, the effects of the viscosity ratio, flowrate ratio, and the non-Newtonian behaviors on the stability of the coaxial extrusion process are investigated experimentally and numerically. The results show that all three factors can affect the stability of the process. When the ratio of viscosities increases, the process becomes unstable. The extrusion process tends to be stable when the flowrate of the outer fluid is much higher than that of the inner fluid. When the overall flowrate decreases, due to the non-Newtonian fluid behavior, the extrusion process can become unstable. This study shows the interconnected relationship between viscosity, flowrate, and non-Newtonian fluid behaviors and their effects on the stability of the coaxial extrusion process. The non-Newtonian flow behavior needs to be considered when studying or using coaxial extrusion. This study also provides a guiding principle on how to alter extrusion parameters in order to achieve the desired flow pattern.

References

1.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
,
Markwald
,
R. R.
, and
Carolina
,
S.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
. 10.1002/bit.24591
2.
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2012
, “
Laser-Assisted Printing of Alginate Long Tubes and Annular Constructs
,”
Biofabrication
,
5
(
1
), p.
015002
. 10.1088/1758-5082/5/1/015002
3.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
. 10.1016/j.biomaterials.2009.06.034
4.
Colosi
,
C.
,
Costantini
,
M.
,
Latini
,
R.
,
Ciccarelli
,
S.
,
Stampella
,
A.
,
Barbetta
,
A.
,
Massimi
,
M.
,
Devirgiliis
,
L. C.
, and
Dentini
,
M.
,
Jul. 2014
, “
Rapid Prototyping of Chitosan-Coated Alginate Scaffolds Through the Use of a 3D Fiber Deposition Technique
,”
J. Mater. Chem. B
,
2
(
39
), pp.
6779
6791
. 10.1039/C4TB00732H
5.
Gao
,
Q.
,
He
,
Y.
,
Fu
,
J.
,
Liu
,
A.
, and
Ma
,
L.
,
2015
, “
Coaxial Nozzle-Assisted 3D Bioprinting With Built-in Microchannels for Nutrients Delivery
,”
Biomaterials
,
61
, pp.
203
215
. 10.1016/j.biomaterials.2015.05.031
6.
Zhu
,
K.
,
Chen
,
N.
,
Liu
,
X.
,
Mu
,
X.
,
Zhang
,
W.
,
Wang
,
C.
, and
Zhang
,
Y. S.
,
2018
, “
A General Strategy for Extrusion Bioprinting of Bio-Macromolecular Bioinks Through Alginate-Templated Dual-Stage Crosslinking
,”
Macromol. Biosci.
,
18
(
9
), p.
1800127
. 10.1002/mabi.201800127
7.
Xu
,
Q.
,
Ricky Lee
,
S. W.
, and
Lo
,
J. C. C.
,
2018
, “
Additive Manufacturing of Micro-Channels on a Silicon Substrate Based on Coaxial Printing Dispenser With In-Situ UV LED Curing
,”
2018 20th International Conference on Electronic Materials and Packaging (EMAP)
,
Clear Water Bay, Hong Kong
,
Dec. 2018
, pp.
1
4
, 10.1109/EMAP.2018.8660886.
8.
Zhang
,
Y.
,
Yu
,
Y.
, and
Ozbolat
,
I. T.
,
2013
, “
Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020902
. 10.1115/1.4024398
9.
Millik
,
S. C.
,
Dostie
,
A. M.
,
Karis
,
D. G.
,
Smith
,
P. T.
,
McKenna
,
M.
,
Chan
,
N.
,
Curtis
,
C. D.
,
Nance
,
E.
,
Theberge
,
A. B.
, and
Nelson
,
A.
,
2019
, “
3D Printed Coaxial Nozzles for the Extrusion of Hydrogel Tubes Toward Modeling Vascular Endothelium
,”
Biofabrication
,
11
(
4
), p.
045009
. 10.1088/1758-5090/ab2b4d
10.
Jin
,
Y.
,
Zhao
,
D.
, and
Huang
,
Y.
,
2017
, “
Fabrication of Double-Layered Alginate Capsules Using Coaxial Nozzle
,”
J. Micro Nano-Manuf.
,
5
(
4
), p.
041007
. 10.1115/1.4037646
11.
Khondoker
,
M. A. H.
,
Ostashek
,
A.
, and
Sameoto
,
D.
,
2019
, “
Direct 3D Printing of Stretchable Circuits via Liquid Metal Co-Extrusion Within Thermoplastic Filaments
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900060
. 10.1002/adem.201900060
12.
Zhang
,
J.
,
Choi
,
S.-W.
, and
Kim
,
S. S.
,
2011
, “
Micro- and Nano-Scale Hollow TiO2 Fibers by Coaxial Electrospinning: Preparation and Gas Sensing
,”
J. Solid State Chem.
,
184
(
11
), pp.
3008
3013
. 10.1016/j.jssc.2011.09.014
13.
Díaz
,
J. E.
,
Fernández-Nieves
,
A.
,
Barrero
,
A.
,
Márquez
,
M.
, and
Loscertales
,
I. G.
,
2008
, “
Fabrication of Structured Micro and Nanofibers by Coaxial Electrospinning
,”
J. Phys. Conf. Ser.
,
127
, p.
012008
. 10.1088/1742-6596/127/1/012008
14.
Dosunmu
,
O. O.
,
Chase
,
G. G.
,
Kataphinan
,
W.
, and
Reneker
,
D. H.
,
2006
, “
Electrospinning of Polymer Nanofibres From Multiple Jets on a Porous Tubular Surface
,”
Nanotechnology
,
17
(
4
), pp.
1123
1127
. 10.1088/0957-4484/17/4/046
15.
Nista
,
S. V. G.
,
Bettini
,
J.
, and
Mei
,
L. H. I.
,
2015
, “
Coaxial Nanofibers of Chitosan–Alginate–PEO Polycomplex Obtained by Electrospinning
,”
Carbohydr. Polym.
,
127
, pp.
222
228
. 10.1016/j.carbpol.2015.03.063
16.
Quintavalle
,
U.
,
Voinovich
,
D.
,
Perissutti
,
B.
,
Serdoz
,
F.
, and
Grassi
,
M.
,
2007
, “
Theoretical and Experimental Characterization of Stearic Acid-Based Sustained Release Devices Obtained by Hot Melt Co-Extrusion
,”
J. Drug Deliv. Sci. Technol.
,
17
(
6
), pp.
415
420
. 10.1016/S1773-2247(07)50082-1
17.
Yu
,
I.
,
Grindrod
,
S.
, and
Chen
,
R.
,
2020
, “
Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
081006
. 10.1115/1.4047091
18.
Perez
,
R. A.
, and
Kim
,
H.-W.
,
2015
, “
Core–Shell Designed Scaffolds for Drug Delivery and Tissue Engineering
,”
Acta Biomater.
,
21
, pp.
2
19
. 10.1016/j.actbio.2015.03.013
19.
Perez
,
R. A.
, and
Kim
,
H.-W.
,
2013
, “
Core–Shell Designed Scaffolds of Alginate/Alpha-Tricalcium Phosphate for the Loading and Delivery of Biological Proteins
,”
J. Biomed. Mater. Res. A
,
101A
(
4
), pp.
1103
1112
. 10.1002/jbm.a.34406
20.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
025004
. 10.1088/1758-5082/5/2/025004
21.
Jia
,
W.
,
Selcan Gungor-Ozkerim
,
P.
,
Zhang
,
Y. S.
,
Yue
,
K.
,
Zhu
,
K.
,
Liu
,
W.
,
Pi
,
Q.
,
Byambaa
,
B.
,
Dokmeci
,
M. R.
,
Shin
,
S. R.
, and
Khademhosseini
,
A.
,
2016
, “
Direct 3D Bioprinting of Perfusable Vascular Constructs Using a Blend Bioink
,”
Biomaterials
,
106
, pp.
58
68
. 10.1016/j.biomaterials.2016.07.038
22.
Li
,
S.
,
Liu
,
Y.
,
Li
,
Y.
,
Zhang
,
Y.
, and
Hu
,
Q.
,
2015
, “
Computational and Experimental Investigations of the Mechanisms Used by Coaxial Fluids to Fabricate Hollow Hydrogel Fibers
,”
Chem. Eng. Process. Process Intensif.
,
95
, pp.
98
104
. 10.1016/j.cep.2015.05.018
23.
Li
,
Y.
,
Liu
,
Y.
,
Jiang
,
C.
,
Li
,
S.
,
Liang
,
G.
, and
Hu
,
Q.
,
2016
, “
A Reactor-Like Spinneret Used in 3D Printing Alginate Hollow Fiber: a Numerical Study of Morphological Evolution
,”
Soft Matter
,
12
(
8
), pp.
2392
2399
. 10.1039/C5SM02733K
24.
Ghosh
,
S.
,
Das
,
G.
, and
Das
,
P. K.
,
2010
, “
Simulation of Core Annular Downflow Through CFD—A Comprehensive Study
,”
Chem. Eng. Process. Process Intensif.
,
49
(
11
), pp.
1222
1228
. 10.1016/j.cep.2010.09.007
25.
Naeimirad
,
M.
, and
Zadhoush
,
A.
,
2018
, “
Melt-spun Liquid Core Fibers: A CFD Analysis on Biphasic Flow in Coaxial Spinneret Die
,”
Fibers Polym.
,
19
(
4
), pp.
905
913
. 10.1007/s12221-018-7902-z
26.
Eggers
,
J.
, and
Villermaux
,
E.
,
2008
, “
Physics of Liquid Jets
,”
Rep. Prog. Phys.
,
71
(
3
), p.
036601
. 10.1088/0034-4885/71/3/036601
27.
Peng
,
L.
,
Yang
,
M.
,
Guo
,
S.
,
Liu
,
W.
, and
Zhao
,
X.
,
2011
, “
The Effect of Interfacial Tension on Droplet Formation in Flow-Focusing Microfluidic Device
,”
Biomed. Microdevices
,
13
(
3
), pp.
559
564
. 10.1007/s10544-011-9526-6
28.
Gioffredi
,
E.
,
Boffito
,
M.
,
Calzone
,
S.
,
Giannitelli
,
S. M.
,
Rainer
,
A.
,
Trombetta
,
M.
,
Mozetic
,
P.
, and
Chiono
,
V.
,
2016
, “
Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications
,”
Proc. CIRP
,
49
, pp.
125
132
. 10.1016/j.procir.2015.11.001
29.
Müller
,
M.
,
Öztürk
,
E.
,
Arlov
,
Ø.
,
Gatenholm
,
P.
, and
Zenobi-Wong
,
M.
,
2017
, “
Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
210
223
. 10.1007/s10439-016-1704-5
30.
Chen
,
K. P.
, and
Zhang
,
Y.
,
1993
, “
Stability of the Interface in Co-Extrusion Flow of Two Viscoelastic Fluids Through a Pipe
,”
J. Fluid Mech.
,
247
, pp.
489
502
. 10.1017/S0022112093000539
31.
Ray
,
P. K.
,
Hauge
,
J. C.
, and
Papageorgiou
,
D. T.
,
2018
, “
Nonlinear Interfacial Instability in Two-Fluid Viscoelastic Couette Flow
,”
J. Non-Newton. Fluid Mech.
,
251
, pp.
17
27
. 10.1016/j.jnnfm.2017.11.004
32.
Peng
,
J.
, and
Zhu
,
K.-Q.
,
2011
, “
Instability of the Interface in Co-Extrusion Flow of Two UCM Fluids in the Presence of Surfactant
,”
J. Non-Newton. Fluid Mech.
,
166
(
1
), pp.
152
163
. 10.1016/j.jnnfm.2010.11.006
33.
Kashid
,
M. N.
,
Kowaliński
,
W.
,
Renken
,
A.
,
Baldyga
,
J.
, and
Kiwi-Minsker
,
L.
,
2012
, “
Analytical Method to Predict Two-Phase Flow Pattern in Horizontal Micro-Capillaries
,”
Chem. Eng. Sci.
,
74
, pp.
219
232
. 10.1016/j.ces.2012.02.029
34.
Joseph
,
D. D.
,
Bai
,
R.
,
Chen
,
K. P.
, and
Renardy
,
Y. Y.
,
1997
, “
Core-Annular Flows
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
65
90
. 10.1146/annurev.fluid.29.1.65
35.
Jalaal
,
M.
,
Cottrell
,
G.
,
Balmforth
,
N.
, and
Stoeber
,
B.
,
2017
, “
On the Rheology of Pluronic F127 Aqueous Solutions
,”
J. Rheol.
,
61
(
1
), pp.
139
146
. 10.1122/1.4971992
36.
Shriky
,
B.
,
Kelly
,
A.
,
Isreb
,
M.
,
Babenko
,
M.
,
Mahmoudi
,
N.
,
Rogers
,
S.
,
Shebanova
,
O.
,
Snow
,
T.
, and
Gough
,
T.
,
2020
, “
Pluronic F127 Thermosensitive Injectable Smart Hydrogels for Controlled Drug Delivery System Development
,”
J. Colloid Interface Sci.
,
565
, pp.
119
130
. 10.1016/j.jcis.2019.12.096
37.
Grzybowski
,
H.
, and
Mosdorf
,
R.
,
2014
, “
Modelling of Two-Phase Flow in a Minichannel Using Level-Set Method
,”
J. Phys. Conf. Ser.
,
530
, p.
012049
. 10.1088/1742-6596/530/1/012049
38.
Pillapakkam
,
S. B.
, and
Singh
,
P.
,
2001
, “
A Level-Set Method for Computing Solutions to Viscoelastic Two-Phase Flow
,”
J. Comput. Phys.
,
174
(
2
), pp.
552
578
. 10.1006/jcph.2001.6927
39.
Lee
,
B.
, and
Kang
,
M.
,
2016
, “
Full 3D Simulations of Two-Phase Core–Annular Flow in Horizontal Pipe Using Level Set Method
,”
J. Sci. Comput.
,
66
(
3
), pp.
1025
1051
. 10.1007/s10915-015-0053-0
40.
Li
,
J.
,
Li
,
Y.
,
Lee
,
T.-C.
, and
Huang
,
Q.
,
2013
, “
Structure and Physical Properties of Zein/Pluronic F127 Composite Films
,”
J. Agric. Food Chem.
,
61
(
6
), pp.
1309
1318
. 10.1021/jf3043055
41.
Antonoff
,
G.
,
1942
, “
On the Validity of Antonoff’s Rule
,”
J. Phys. Chem.
,
46
(
4
), pp.
497
499
. 10.1021/j150418a009
42.
Desai
,
P. R.
,
Jain
,
N. J.
,
Sharma
,
R. K.
, and
Bahadur
,
P.
,
2001
, “
Effect of Additives on the Micellization of PEO/PPO/PEO Block Copolymer F127 in Aqueous Solution
,”
Colloids Surf. Physicochem. Eng. Asp.
,
178
(
1–3
), pp.
57
69
. 10.1016/S0927-7757(00)00493-3
43.
Nunes
,
J. K.
,
Tsai
,
S. S. H.
,
Wan
,
J.
, and
Stone
,
H. A.
,
2013
, “
Dripping and Jetting in Microfluidic Multiphase Flows Applied to Particle and Fibre Synthesis
,”
J. Phys. Appl. Phys.
,
46
(
11
), p.
114002
. 10.1088/0022-3727/46/11/114002
44.
Utada
,
A. S.
,
Fernandez-Nieves
,
A.
,
Stone
,
H. A.
, and
Weitz
,
D. A.
,
2007
, “
Dripping to Jetting Transitions in Coflowing Liquid Streams
,”
Phys. Rev. Lett.
,
99
(
9
), p.
094502
. 10.1103/PhysRevLett.99.094502
You do not currently have access to this content.