Abstract

The geometric manufacturability of a part design is an important decision factor for various manufacturing applications and is especially critical for the machining process. In machining, the geometric manufacturability is primarily determined by geometric accessibility, which has a direct impact on decisions such as setup planning, tool selection, tool orientation selection/adjustment, and the tool path strategies. These planning decisions can have a significant impact on cycle time and cost. Thus, it can be justified that geometric manufacturability is one of the essential product design aspects that must be evaluated for machining processes. Being able to evaluate the geometric manufacturability will not only provide a part design metric but also offer a new approach for manufacturing process planning and optimization. This research proposes a new method for determining the geometric manufacturability of a part designed for five-axis milling. In this work, the part design is input as polygon mesh boundary represented models, the 3D tool geometry is sampled to line segments, the 3D geometric accessibility of the part design is calculated, and a new metric for five-axis milling manufacturability evaluation is developed. Case studies on complex mechanical component design examples are conducted to validate the method.

References

1.
Chen
,
L. L.
, and
Woo
,
T. C.
,
1992
, “
Computational Geometry on the Sphere With Application to Automated Machining
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
288
295
. 10.1115/1.2916945
2.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
Comput.-Aided Des.
,
42
(
7
), pp.
641
654
. 10.1016/j.cad.2010.04.002
3.
Marshall
,
S.
, and
Griffiths
,
J. G.
,
1994
, “
A New Cutter-Path Topology for Milling Machines
,”
Comput.-Aided Des.
,
26
(
3
), pp.
204
214
. 10.1016/0010-4485(94)90043-4
4.
Pi
,
J.
,
Red
,
E.
, and
Jensen
,
G.
,
1998
, “
Grind-Free Tool Path Generation for Five-Axis Surface Machining
,”
Comput. Integr. Manuf. Syst.
,
11
(
4
), pp.
337
350
. 10.1016/S0951-5240(98)00033-0
5.
El-Midany
,
T. T.
,
Elkeran
,
A.
, and
Tawfik
,
H.
,
2006
, “
Toolpath Pattern Comparison Contour-Parallel With Direction-Parallel
,”
Geometric Modeling and Imaging--New Trends (GMAI'06)
,
London, UK
,
July 5–7
, pp.
77
82
.
6.
Beudaert
,
X.
,
Pechard
,
P. Y.
, and
Tournier
,
C.
,
2011
, “
5-Axis Tool Path Smoothing Based on Drive Constraints to Cite This Version : HAL Id : Hal-00626187 5-Axis Tool Path Smoothing Based on Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
958
965
. 10.1016/j.ijmachtools.2011.08.014
7.
Chaves-Jacob
,
J.
,
Poulachon
,
G.
, and
Duc
,
E.
,
2012
, “
Optimal Strategy for Finishing Impeller Blades Using 5-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
58
(
5–8
), pp.
573
583
. 10.1007/s00170-011-3424-1
8.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
9.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
,
1997
, “
Automated Manufacturability Analysis: A Survey
,”
Res. Eng. Des.
,
9
(
3
), pp.
168
190
. 10.1007/BF01596601
10.
Gupta
,
S. K.
,
1994
,
Automated Manufacturability Analysis of Machined Parts, Doctoral dissertation
.
11.
Yang
,
W.
,
Ding
,
H.
, and
Xiong
,
Y.
,
1999
, “
Manufacturability Analysis for a Sculptured Surface Using Visibility Cone Computation
,”
Int. J. Adv. Manuf. Technol.
,
15
(
5
), pp.
317
321
. 10.1007/s001700050073
12.
Arni
,
R.
, and
Gupta
,
S. K.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
156
. 10.1115/1.1326439
13.
Woo
,
T. C.
,
1994
, “
Visibility Maps and Spherical Algorithms
,”
Comput.-Aided Des.
,
26
(
1
), pp.
6
16
. 10.1016/0010-4485(94)90003-5
14.
Spyridi
,
A. J.
, and
Requicha
,
A. A. G.
,
1990
, “
Accessibility Analysis for the Automatic Inspection of Mechanical Parts by Coordinate Measuring Machines
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
,
IEEE Computer Society Press
, pp.
1284
1289
.
15.
Lee
,
Y.-S.
, and
Chang
,
T.-C.
,
1995
, “
2-Phase Approach to Global Tool Interference Avoidance in 5-Axis Machining
,”
Comput.-Aided Des.
,
27
(
10
), pp.
715
729
. 10.1016/0010-4485(94)00021-5
16.
Vafaeesefa
,
A.
, and
ElMaraghy
,
H. A.
,
1998
, “
Accessibility Analysis in 5-Axis Machining of Sculptured Surfaces
,”
Proceedings of 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
,
May 20
,
IEEE
, pp.
2464
2469
.
17.
Spitz
,
S. N.
, and
Requicha
,
A. A. G.
,
2000
, “
Accessibility Analysis Using Computer Graphics Hardware
,”
IEEE Trans. Visual. Comput. Graphics
,
6
(
3
), pp.
208
219
. 10.1109/2945.879783
18.
Suh
,
S. H.
, and
Kang
,
J. K.
,
1995
, “
Process Planning for Multi-axis NC Machining of Free Surfaces
,”
Int. J. Prod. Res.
,
33
(
10
), pp.
2723
2738
. 10.1080/00207549508904841
19.
Dhaliwal
,
S.
,
Gupta
,
S. K.
,
Huang
,
J.
, and
Priyadarshi
,
A.
,
2003
, “
Algorithms for Computing Global Accessibility Cones
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
3
), pp.
200
209
. 10.1115/1.1606475
20.
Kim
,
Y.-J.
,
Elber
,
G.
,
Bartoň
,
M.
, and
Pottmann
,
H.
,
2015
, “
Precise Gouging-Free Tool Orientations for 5-Axis CNC Machining
,”
Comput.-Aided Des.
,
58
, pp.
220
229
. 10.1016/j.cad.2014.08.010
21.
Hu
,
P.
,
Chen
,
L.
, and
Tang
,
K.
,
2017
, “
Efficiency-Optimal Iso-planar Tool Path Generation for Five-Axis Finishing Machining of Freeform Surfaces
,”
Comput.-Aided Des.
,
83
, pp.
33
50
. 10.1016/j.cad.2016.10.001
22.
Ezair
,
B.
, and
Elber
,
G.
,
2018
, “
Automatic Generation of Globally Assured Collision Free Orientations for 5-Axis Ball-End Tool-Paths
,”
Comput.-Aided Des.
,
102
, pp.
171
181
. 10.1016/j.cad.2018.04.011
23.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-Free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
. 10.1007/s00170-013-5148-x
24.
Konobrytskyi
,
D.
,
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Tarbutton
,
J. A.
, and
Kurfess
,
T. R.
,
2018
, “
5-Axis Tool Path Planning Based on Highly Parallel Discrete Volumetric Geometry Representation: Part I Contact Point Generation
,”
Comput. Aided. Des. Appl.
,
15
(
1
), pp.
76
89
. 10.1080/16864360.2017.1353730
25.
Lienhardt
,
P.
,
1991
, “
Topological Models for Boundary Representation: A Comparison With n-Generalized Maps
,”
Comput.-Aided Des.
,
23
(
1
), pp.
59
82
. 10.1016/0010-4485(91)90082-8
26.
Requicha
,
A. A. G.
, and
Voelcker
,
H. B.
,
1977
, “
Constructive Solid Geometry
.”
27.
Jung
,
J. Y.
,
2002
, “
Manufacturing Cost Estimation for Machined Parts Based on Manufacturing Features
,”
J. Intell. Manuf.
,
13
(
4
), pp.
227
238
. 10.1023/A:1016092808320
28.
Chang
,
T.-C.
, and
Wysk
,
R. A.
,
1997
,
Computer-Aided Manufacturing
,
Prentice Hall PTR
,
Englewood Cliffs, NJ
.
29.
Yang
,
D. C. H.
, and
Han
,
Z.
,
1999
, “
Interference Detection and Optimal Tool Selection in 3-Axis NC Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
,
31
(
5
), pp.
303
315
. 10.1016/S0010-4485(99)00031-7
30.
Glassner
,
A.
,
1989
,
An Introduction to Ray Tracing
,
Morgan Kaufmann Publishers, Inc.
,
San Francisco, CA
, pp.
121
160
.
31.
Purcell
,
T. J.
,
Buck
,
I.
,
Mark
,
W. R.
, and
Hanrahan
,
P.
,
2002
, “
Ray Tracing on Programmable Graphics Hardware
,”
Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ‘02
,
San Antonio, TX
,
July 23–26
, pp.
703
712
.
32.
Ericson
,
C.
,
2005
,
Real-Time Collision Detection
,
Elsevier
,
New York
, pp.
235
284
.
33.
Balasubramaniam
,
M
.,
2001
,
Automatic 5-Axis NC Toolpath Generation
,
Doctoral dissertation
,
Massachusetts Institute of Technology
.
34.
Xu
,
G.
,
2006
, “
Discrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations
,”
Int. J. Comput. Geom. Appl.
,
16
(
1
), pp.
75
93
. 10.1142/S0218195906001938
35.
Barsky
,
B. A.
, and
DeRose
,
T. D.
,
1990
, “
Geometric Continuity of Parametric Curves: Constructions of Geometrically Continuous Splines
,”
IEEE Comput. Graph. Appl.
,
10
(
1
), pp.
60
68
. 10.1109/38.45811
36.
Lee
,
Y. S.
, and
Chang
,
T. C.
,
1991
, “
CASCAM–An Automated System for Sculptured Surface Cavity Machining
,”
Comput.-Aided Ind.
,
16
(
4
), pp.
321
342
. 10.1016/0166-3615(91)90073-I
37.
Quintana
,
G.
,
De Ciurana
,
J.
, and
Ribatallada
,
J.
,
2010
, “
Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations
,”
Mater. Manuf. Processes
,
25
(
6
), pp.
386
398
. 10.1080/15394450902996601
38.
Lim
,
E. M.
,
Feng
,
H. Y.
,
Menq
,
C. H.
, and
Lin
,
Z. H.
,
1995
, “
The Prediction of Dimensional Error for Sculptured Surface Productions Using the Ball-End Milling Process. Part 1: Chip Geometry Analysis and Cutting Force Prediction
,”
Int. J. Mach. Tools Manuf.
,
35
(
8
), pp.
1149
1169
. 10.1016/0890-6955(94)00044-K
39.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The Prediction of Cutting Forces in End Milling With Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
. 10.1016/0020-7357(82)90016-6
40.
Jalili Saffar
,
R.
,
Razfar
,
M. R.
,
Zarei
,
O.
, and
Ghassemieh
,
E.
,
2008
, “
Simulation of Three-Dimension Cutting Force and Tool Deflection in the End Milling Operation Based on Finite Element Method
,”
Simul. Model. Pract. Theory
,
16
(
10
), pp.
1677
1688
. 10.1016/j.simpat.2008.08.010
41.
GE
,
2013
, “
General Electric Jet Engine Bracket Challenge
,” GrabCAD, https://grabcad.com/challenges/ge-jet-engine-bracket-challenge/
42.
Kurniawan
,
M. A.
,
2013
, “
M Kurniawan GE Jet Engine Bracket Version 1.2
,” GrabCAD, https://grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1
43.
Johansson
,
T.
,
2013
, “
TJ2
,” GrabCAD, https://grabcad.com/library/tj2-1
You do not currently have access to this content.