Abstract

Modern CNC machine tools provide lookup tables to enhance the machine tool’s precision but the generation of table entries can be a demanding task. In this paper, the coefficients of the 25 cubic polynomial functions used to generate the LUTs entries for a five-axis machine tool are obtained by solving a linear system incorporating a Vandermonde expansion of the nominal control jacobian. The necessary volumetric errors within the working volume are predicted from the machine’s geometric errors estimated by the indirect error identification method based on the on-machine touch probing measurement of a reconfigurable uncalibrated master ball artifact (RUMBA). The proposed scheme is applied to a small Mitsubishi M730 CNC machine. Two different error models are used for modeling the erroneous machine tool, one estimating mainly inter-axis errors and the other including numerous intra-axis errors. The table-based compensation is validated through additional on-machine measurements. Experimental tests demonstrate a significant reduction in volumetric errors and in the effective machine error parameters. The LUTs reduce most of the dominant machine error parameters. It is concluded that although being effective in correcting some geometric errors, the generated LUTs cannot compensate for some axis misalignments such as EB(OX)A and EB(OX)Z. The root-mean-square of the translational volumetric errors is improved from 87.3, 75.4, and 71.5 µm down to 24.8, 18.8, and 22.1 µm in the X-, Y-, and Z-directions, respectively.

References

1.
Srivastava
,
A. K.
,
Veldhuis
,
S. C.
, and
Elbestawlt
,
M. A.
,
1995
, “
Modeling Geometric and Thermal Errors in Five-Axis CNC Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
35
(
9
), pp.
1321
1337
. 10.1016/0890-6955(94)00048-O
2.
Sartori
,
S.
, and
Zhang
,
G. X.
,
1995
, “
Geometric Error Measurement and Compensation of Machines
,”
CIRP Ann.
,
44
(
2
), pp.
599
609
. 10.1016/S0007-8506(07)60507-1
3.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann.
,
57
(
2
), pp.
660
675
. 10.1016/j.cirp.2008.09.008
4.
Suh
,
S.-H.
,
Lee
,
E.-S.
, and
Sohn
,
J.-W.
,
1999
, “
Enhancement of Geometric Accuracy via an Intermediate Geometrical Feedback Scheme
,”
J. Manuf. Syst.
,
18
(
1
), pp.
12
21
. 10.1016/S0278-6125(99)80009-0
5.
Lei
,
W. T.
, and
Hsu
,
Y. Y.
,
2003
, “
Accuracy Enhancement of Five-Axis CNC Machines Through Real-Time Error Compensation
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
871
877
. 10.1016/S0890-6955(03)00089-0
6.
Abbaszadeh-Mir
,
Y.
,
Mayer
,
J. R. R.
,
Cloutier
,
G.
, and
Fortin
,
C.
,
2002
, “
Theory and Simulation for the Identification of the Link Geometric Errors for a Five-Axis Machine Tool Using a Telescoping Magnetic Ball-bar
,”
Int. J. Prod. Res.
,
40
(
18
), pp.
4781
97
. 10.1080/00207540210164459
7.
Montavon
,
B.
,
Dahlem
,
P.
, and
Schmitt
,
R. H.
,
2019
, “Fast Machine Tool Calibration Using a Single Laser Tracker,” Laser Metrology and Machine Performance XIII March, pp. 203–213.
8.
Esmaeili
,
S.
, and
Mayer
,
J. R. R.
,
2020
, “
An Integrated Geometric and Hysteretic Error Model of a Three Axis Machine Tool and Its Identification With a 3D Telescoping Ball-Bar
,”
J. Manuf. Mater. Processing
,
4
(
1
), p.
24
. 10.3390/jmmp4010024
9.
Mir
,
Y. A.
,
Mayer
,
J. R. R.
, and
Fortin
,
C.
,
2002
, “
Tool Path Error Prediction of a Five-Axis Machine Tool With Geometric Errors
,”
Proceedings Ins. Mech. Eng.
,
216
(
5
), pp.
697
712
. 10.1243/0954405021520391
10.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
. 10.1016/S0890-6955(00)00010-9
11.
Wang
,
S.-M.
,
Yu
,
H.-J.
, and
Liao
,
H.-W.
,
2005
, “
A New High-Efficiency Error Compensation System for CNC Multi-axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
28
(
5-6
), pp.
518
526
. 10.1007/s00170-004-2389-8
12.
Li
,
J. G.
,
Zhao
,
H.
,
Yao
,
Y. X.
, and
Liu
,
C. Q.
,
2007
, “
Off-line Optimization on NC Machining Based on Virtual Machining
,”
Int. J. Adv. Manuf. Technol.
,
36
(
9-10
), pp.
908
917
. 10.1007/s00170-006-0915-6
13.
Zhang
,
H.
,
Yang
,
J.
,
Zhang
,
Y.
,
Shen
,
J.
, and
Wang
,
C.
,
2010
, “
Measurement and Compensation for Volumetric Positioning Errors of CNC Machine Tools Considering Thermal Effect
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1-4
), pp.
275
283
. 10.1007/s00170-010-3024-5
14.
Xi
,
X.-C.
,
Poo
,
A.-N.
,
Hong
,
G.-S.
, and
Huo
,
F.
,
2010
, “
Experimental Implementation of Taylor Series Expansion Error Compensation on a Bi-axial CNC Machine
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1-4
), pp.
285
299
. 10.1007/s00170-010-2843-8
15.
Rahman
,
M.
,
Heikkala
,
J.
, and
Lappalainen
,
K.
,
2000
, “
Modeling, Measurement and Error Compensation of Multi-axis Machine Tools
,”
Part I: Theory. Int. J. Mach. Tools Manuf.
,
40
(
10
), pp.
1535
1546
. 10.1016/S0890-6955(99)00101-7
16.
Yuan
,
J.
, and
Ni
,
J.
,
1998
, “
The Real-Time Error Compensation Technique for CNC Machining Systems
,”
Mechatronics
,
8
(
4
), pp.
359
380
. 10.1016/S0957-4158(97)00062-7
17.
Jung
,
J.-H.
,
Choi
,
J.-P.
, and
Lee
,
S.-J.
,
2006
, “
Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-machine Measurement
,”
J. Mater. Process. Technol.
,
174
(
1-3
), pp.
56
66
. 10.1016/j.jmatprotec.2004.12.014
18.
Wang
,
S.-M.
,
Liu
,
Y.-L.
, and
Kang
,
Y.
,
2002
, “
An Efficient Error Compensation System for CNC Multi-axis Machines
,”
Int. J. Mach. Tools Manuf.
,
42
(
11
), pp.
1235
1245
. 10.1016/S0890-6955(02)00053-6
19.
Khan
,
A. W.
, and
Chen
,
W.
,
2010
, “
A Methodology for Systematic Geometric Error Compensation in Five-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5-8
), pp.
615
628
. 10.1007/s00170-010-2848-3
20.
Givi
,
M.
, and
Mayer
,
J. R. R.
,
2014
, “
Volumetric Error Formulation and Mismatch Test for Five-Axis CNC Machine Compensation Using Differential Kinematics and Ephemeral G-Code
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9-12
), pp.
1645
1653
. 10.1007/s00170-014-6558-0
21.
Koliskor
,
A.
,
1971
,
Compensating for Automatic-Cycle Machining Errors
, Vol.
5
,
Machines and Tooling
, pp.
1
14
.
22.
Mahbubur
,
R. M. D.
,
Heikkala
,
J.
,
Lappalainen
,
K.
, and
Karjalainen
,
J. A.
,
1997
, “
Positioning Accuracy Improvement in Five-Axis Milling by Post Processing
,”
Int. J. Mach. Tools Manuf.
,
37
(
2
), pp.
223
236
. 10.1016/0890-6955(95)00091-7
23.
Creamer
,
J.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2017
, “
Selection of Limited and Constrained Compensation Tables for Five-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1-4
), pp.
1315
1327
. 10.1007/s00170-017-0230-4
24.
Creamer
,
J.
,
Sammons
,
P. M.
,
Bristow
,
D. A.
,
Landers
,
R. G.
,
Freeman
,
P. L.
, and
Easley
,
S. J.
,
2016
, “
Table-Based Volumetric Error Compensation of Large Five-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021011
. 10.1115/1.4034399
25.
Creamer
,
J.
,
Sammons
,
P. M.
,
Bristow
,
D. A.
,
Landers
,
R. G.
,
Freeman
,
P. L.
, and
Easley
,
S. J.
,
2013
Table-Based Compensation for 5-Axis Machine Tools
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013
,
San Diego, CA
,
Nov. 15–21
.
26.
Esmaeili
,
S. M.
, and
Mayer
,
J. R. R.
,
2020/02/01 2020
, “
Generation of a 3D Error Compensation Grid From ISO 230-1 Error Parameters Obtained by a SAMBA Indirect Calibration and Validated by a Ball-Bar Spherical Test
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11-12
), pp.
4649
4662
. 10.1007/s00170-020-04928-4
27.
Controller
,
F.
Series 30i/Model A.
28.
Controller
,
S.
SINUMERIK 840D.
29.
Ibaraki
,
S.
, and
Knapp
,
W.
,
2012
, “
Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review
,”
Int. J. Automation Technol.
,
6
(
2
), pp.
110
124
. 10.20965/ijat.2012.p0110
30.
ISO 230-1
. Test Code for Machine Tools-Part1: Geometric Accuracy of Machines Operating Under No-load or Quassi-static Conditions 2012.
31.
Slamani
,
M.
,
Mayer
,
J. R. R.
, and
Cloutier
,
G. M.
,
2011
, “
Modeling and Experimental Validation of Machine Tool Motion Errors Using Degree Optimized Polynomial Including Motion Hysteresis
,”
Exp. Tech.
,
35
(
1
), pp.
37
44
. 10.1111/j.1747-1567.2009.00576.x
32.
Rahman
,
M. M.
, and
Mayer
,
J. R. R.
,
2015
, “
Five Axis Machine Tool Volumetric Error Prediction Through an Indirect Estimation of Intra- and Inter-axis Error Parameters by Probing Facets on a Scale Enriched Uncalibrated Indigenous Artefact
,”
Precis. Eng.
,
40
, pp.
94
105
. 10.1016/j.precisioneng.2014.10.010
33.
Mayer
,
J. R. R.
,
2012
, “
Five-Axis Machine Tool Calibration by Probing a Scale Enriched Reconfigurable Uncalibrated Master Balls Artefact
,”
CIRP Ann.
,
61
(
1
), pp.
515
518
. 10.1016/j.cirp.2012.03.022
34.
Bringmann
,
B.
, and
Knapp
,
W.
,
2006
, “
Model-Based ‘Chase-the-Ball’ Calibration of a 5-Axes Machining Center
,”
CIRP Ann.
,
55
(
1
), pp.
531
534
. 10.1016/S0007-8506(07)60475-2
You do not currently have access to this content.