Abstract

Additive manufacturing (AM) for metals is a widely researched, continuously enhanced manufacturing process and is implemented across various industries. However, the AM process exhibits variation that affects the geometric quality of the end product. The effect of process variation on geometric quality is rarely considered during the design stages. In this paper, sources that influence the geometric quality in a metal AM process are reviewed from a robust design perspective and further sorted into control factors and noise factors. A framework for geometric robustness analysis of AM products is presented as an outcome. This framework would facilitate development of methods and tools to produce geometry assured AM products. Also, the prospects of variation simulation to support geometric robustness analysis and the challenges associated with it are discussed.

References

1.
ASTM
,
2015
,
ASTM 52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology
,
ASTM International
,
West Conshohocken, PA
,
3
(
4
), p.
5
.
2.
Tack
,
P.
,
Victor
,
J.
,
Gemmel
,
P.
, and
Annemans
,
L.
,
2016
, “
3D-printing Techniques in a Medical Setting: A Systematic Literature Review
,”
Biomed. Eng. Online
,
15
(
1
), p.
115
. 10.1186/s12938-016-0236-4
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B Eng.
,
143
, pp.
172
196
. 10.1016/j.compositesb.2018.02.012
4.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jordá Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramón Blasco Puchades
,
J.
, and
Portolés Griñan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
. 10.1080/00207540903479786
5.
Gebler
,
M.
,
Uiterkamp
,
A. J. S.
, and
Visser
,
C.
,
2014
, “
A Global Sustainability Perspective on 3D Printing Technologies
,”
Energy Policy
,
74
, pp.
158
167
. 10.1016/j.enpol.2014.08.033
6.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
7.
FDA
,
2017
,
Technical Considerations for Additive Manufactured Medical Devices
,
Guidance for Industry and Food and Drug Administration Staff
.
8.
ASTM
,
2018
,
ISO/ASTM 52910-18 Additive Manufacturing—Design—Requirements, Guidelines and Recommendations
,
ASTM International
,
West Conshohocken, PA
.
9.
Vaneker
,
T.
,
Bernard
,
A.
,
Moroni
,
G.
,
Gibson
,
I.
, and
Zhang
,
Y.
,
2020
, “
Design for Additive Manufacturing: Framework and Methodology
,”
CIRP Ann.
,
69
(
2
), pp.
578
599
. 10.1016/j.cirp.2020.05.006
10.
Yadroitsev
,
I.
,
Yadroitsava
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2012
, “
Factor Analysis of Selective Laser Melting Process Parameters and Geometrical Characteristics of Synthesized Single Tracks
,”
Rapid Prototyping J.
,
18
(
3
), pp.
201
208
. 10.1108/13552541211218117
11.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser Appl.
,
27
(
S1
), p.
S14001
. 10.2351/1.4885235
12.
Wang
,
D.
,
Wu
,
S.
,
Bai
,
Y.
,
Lin
,
H.
,
Yang
,
Y.
, and
Song
,
C.
,
2017
, “
Characteristics of Typical Geometrical Features Shaped by Selective Laser Melting
,”
J. Laser Appl.
,
29
(
2
), p.
022007
. 10.2351/1.4980164
13.
Chahal
,
V.
, and
Taylor
,
R. M.
,
2020
, “
A Review of Geometric Sensitivities in Laser Metal 3D Printing
,”
Virtual Phys. Prototyping
,
15
(
2
), pp.
227
241
. 10.1080/17452759.2019.1709255
14.
Chowdhury
,
S.
,
Mhapsekar
,
K.
, and
Anand
,
S.
,
2018
, “
Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031009
. 10.1115/1.4038293
15.
McConaha
,
M.
, and
Anand
,
S.
,
2020
, “
Additive Manufacturing Distortion Compensation Based on Scan Data of Built Geometry
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061001
. 10.1115/1.4046505
16.
Yadroitsava
,
I.
,
Grewar
,
S.
,
Hattingh
,
D.
, and
Yadroitsev
,
I.
,
2015
,
Materials Science Forum
,
H. K.
Chikwanda
and
S.
Chikosha
, Vol.
828
,
Trans Tech Publications
,
Switzerland
, pp.
305
310
.
17.
Phadke
,
M. S.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
18.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
. 10.1016/j.cirpj.2013.10.001
19.
Fotovvati
,
B.
, and
Asadi
,
E.
,
2019
, “
Size Effects on Geometrical Accuracy for Additive Manufacturing of Ti-6Al-4V ELI Parts
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2951
2959
. 10.1007/s00170-019-04184-1
20.
Sufiiarov
,
V. S.
,
Popovich
,
A.
,
Borisov
,
E.
,
Polozov
,
I.
,
Masaylo
,
D.
, and
Orlov
,
A.
,
2017
, “
The Effect of Layer Thickness at Selective Laser Melting
,”
Procedia Eng.
,
174
, pp.
126
134
. 10.1016/j.proeng.2017.01.179
21.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
. 10.1115/1.4032168
22.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2019
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
23.
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
, pp.
231
243
. 10.1016/j.jmsy.2014.06.014
24.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
. 10.1016/j.jmatprotec.2013.01.020
25.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
. 10.1007/s00158-016-1551-x
26.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2018
, “
Support Structures for Additive Manufacturing: A Review
,”
J. Manuf. Mater. Process.
,
2
(
4
), p.
64
. 10.3390/jmmp2040064
27.
Vaidya
,
R.
, and
Anand
,
S.
,
2016
, “
Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint
,”
Procedia Manuf.
,
5
, pp.
1043
1059
. 10.1016/j.promfg.2016.08.072
28.
Cooper
,
K.
,
Steele
,
P.
,
Cheng
,
B.
, and
Chou
,
K.
,
2018
, “
Contact-Free Support Structures for Part Overhangs in Powder-Bed Metal Additive Manufacturing
,”
Inventions
,
3
(
1
), p.
2
. 10.3390/inventions3010002
29.
Cloots
,
M.
,
Spierings
,
A.
, and
Wegener
,
K.
,
2013
, “
Assessing New Support Minimizing Strategies for the Additive Manufacturing Technology SLM
,”
Solid Freeform Fabrication Symposium (SFF)
,
Austin, TX
,
Aug.
, pp.
12
14
.
30.
Gan
,
M. X.
, and
Wong
,
C. H.
,
2016
, “
Practical Support Structures for Selective Laser Melting
,”
J. Mater. Process. Technol.
,
238
, pp.
474
484
. 10.1016/j.jmatprotec.2016.08.006
31.
Robinson
,
J.
,
Ashton
,
I.
,
Fox
,
P.
,
Jones
,
E.
, and
Sutcliffe
,
C.
,
2018
, “
Determination of the Effect of Scan Strategy on Residual Stress in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
13
24
. 10.1016/j.addma.2018.07.001
32.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
. 10.1007/s11740-009-0192-y
33.
Robinson
,
J. H.
,
Ashton
,
I. R. T.
,
Jones
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C.
,
2019
, “
The Effect of Hatch Angle Rotation on Parts Manufactured Using Selective Laser Melting
,”
Rapid Prototyping J.
,
25
(
2
), pp.
289
298
. 10.1108/RPJ-06-2017-0111
34.
Kruth
,
J.-P.
,
Badrossamay
,
M.
,
Yasa
,
E.
,
Deckers
,
J.
,
Thijs
,
L.
, and
Van Humbeeck
,
J.
,
2010
, “
Part and Material Properties in Selective Laser Melting of Metals
,”
Proceedings of the 16th International Symposium on Electromachining
,
Shanghai, China
,
Apr. 19–23
, pp.
3
14
.
35.
Parry
,
L.
,
Ashcroft
,
I.
, and
Wildman
,
R. D.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation
,”
Addit. Manuf.
,
12
, pp.
1
15
. 10.1016/j.addma.2016.05.014
36.
Ali
,
H.
,
Ghadbeigi
,
H.
, and
Mumtaz
,
K.
,
2018
, “
Effect of Scanning Strategies on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V
,”
Mater. Sci. Eng. A
,
712
, pp.
175
187
. 10.1016/j.msea.2017.11.103
37.
Xia
,
M.
,
Gu
,
D.
,
Yu
,
G.
,
Dai
,
D.
,
Chen
,
H.
, and
Shi
,
Q.
,
2016
, “
Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
147
157
. 10.1016/j.ijmachtools.2016.07.010
38.
Mukherjee
,
T.
,
Wei
,
H.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing–Part ii: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys
,”
Comput. Mater. Sci.
,
150
, pp.
369
380
. 10.1016/j.commatsci.2018.04.027
39.
Louw
,
D. F.
, and
Pistorius
,
P.
,
2019
, “
The Effect of Scan Speed and Hatch Distance on Prior-Beta Grain Size in Laser Powder Bed Fused Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2277
2286
. 10.1007/s00170-019-03719-w
40.
Jacob
,
G.
,
Brown
,
C. U.
, and
Donmez
,
A.
,
2018
,
The Influence of Spreading Metal Powders With Different Particle Size Distributions on the Powder Bed Density in Laser-Based Powder Bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
.
41.
Murgau
,
C. C.
,
2016
, “
Microstructure Model for Ti-6Al-4V Used in Simulation of Additive Manufacturing
,”
Ph.D. thesis, Doctoral thesis
,
Lulea University of Technology
.
42.
Tan
,
J. H.
,
Wong
,
W. L. E.
, and
Dalgarno
,
K. W.
,
2017
, “
An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
228
255
. 10.1016/j.addma.2017.10.011
43.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
,
Stutzman
,
P. E.
,
Ferraris
,
C. F.
,
Watson
,
S. S.
, and
Peltz
,
M. A.
,
2014
, “
Characterization of Metal Powders Used for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, p.
460
. 10.6028/jres.119.018
44.
Tang
,
H.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X.
,
Yang
,
G.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
. 10.1007/s11837-015-1300-4
45.
Ladewig
,
A.
,
Schlick
,
G.
,
Fisser
,
M.
,
Schulze
,
V.
, and
Glatzel
,
U.
,
2016
, “
Influence of the Shielding Gas Flow on the Removal of Process By-Products in the Selective Laser Melting Process
,”
Addit. Manuf.
,
10
, pp.
1
9
. 10.1016/j.addma.2016.01.004
46.
Maragowdanahalli Somasundar
,
A.
, and
Paul
,
D.
,
2019
,
Examensarbeten för Masterexamen, Master Theses (IMS), Chalmers tekniska högskola, Institutionen för industri- och materialvetenskap
.
47.
Praniewicz
,
M.
,
Kurfess
,
T.
, and
Saldana
,
C.
,
2019
, “
An Adaptive Geometry Transformation and Repair Method for Hybrid Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011006
. 10.1115/1.4041570
48.
Lorin
,
S.
,
Forslund
,
K.
, and
Soderberg
,
R.
,
2010
, “
Investigating the Role of Simulation for Robust Plastic Design
,”
DS 61: Proceedings of NordDesign 2010, the 8th International NordDesign Conference
,
Göteborg, Sweden
,
Aug. 25–27, 2010
, pp.
185
194
.
49.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
. 10.1115/1.2831115
50.
Soderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
. 10.1080/095448299261371
51.
Soderberg
,
R.
,
Wickman
,
C.
, and
Lindkvist
,
L.
,
2008
, “
Improving Decision Making by Simulating and Visualizing Geometrical Variation in Non-Rigid Assemblies
,”
CIRP Ann.
,
57
(
1
), pp.
175
178
. 10.1016/j.cirp.2008.03.040
52.
Amphyon
,
2020
, Accessed April 27, 2020.
53.
54.
Ansys Additive
, https://www.ansys.com/products/structures/ansys-additive-print, Accessed April 27, 2020.
57.
59.
Sigmund
, https://www.varatech.com/solutions-standalone.html, Accessed April 29, 2020.
62.
RD&T
, http://www.rdnt.se/, Accessed April 29, 2020.
63.
TolAnalyst
, https://www.javelin-tech.com/3d/tolanalyst/, Accessed April 29, 2020.
64.
Creo EZ tolerance analysis
, https://www.ptc.com/en/products/cad/creo/simulation-products/tolerance-analysis, Accessed April 29, 2020.
65.
FLOW-3D
,
2020
, https://www.flow3d.com/products/flow3d-am/, Accessed April 29, 2020.
66.
Alvarez
,
P.
,
Ecenarro
,
J.
,
Setien
,
I.
,
Sebastian
,
M.
,
Echeverria
,
A.
, and
Eciolaza
,
L.
,
2016
, “
Computationally Efficient Distortion Prediction in Powder Bed Fusion Additive Manufacturing
,”
Int. J. Eng. Res. Sci.
,
2
(
10
), pp.
39
46
.
67.
Denlinger
,
E. R.
,
Gouge
,
M.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2017
, “
Thermomechanical Model Development and In Situ Experimental Validation of the Laser Powder-Bed Fusion Process
,”
Addit. Manuf.
,
16
, pp.
73
80
. 10.1016/j.addma.2017.05.001
68.
Afazov
,
S.
,
Denmark
,
W. A.
,
Toralles
,
B. L.
,
Holloway
,
A.
, and
Yaghi
,
A.
,
2017
, “
Distortion Prediction and Compensation in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
15
22
. 10.1016/j.addma.2017.07.005
69.
Li
,
Y.
,
Zhou
,
K.
,
Tan
,
P.
,
Tor
,
S. B.
,
Chua
,
C. K.
, and
Leong
,
K. F.
,
2018
, “
Modeling Temperature and Residual Stress Fields in Selective Laser Melting
,”
Int. J. Mech. Sci.
,
136
, pp.
24
35
. 10.1016/j.ijmecsci.2017.12.001
70.
Li
,
C.
,
Guo
,
Y.
,
Fang
,
X.
, and
Fang
,
F.
,
2018
, “
A Scalable Predictive Model and Validation for Residual Stress and Distortion in Selective Laser Melting
,”
CIRP Ann.
,
67
(
1
), pp.
249
252
. 10.1016/j.cirp.2018.04.105
71.
Tawfik
,
S. M.
,
Nasr
,
M. N.
, and
El Gamal
,
H. A.
,
2019
, “
Finite Element Modelling for Part Distortion Calculation in Selective Laser Melting
,”
Alexandria Eng. J.
,
58
(
1
), pp.
67
74
. 10.1016/j.aej.2018.12.010
72.
Xu
,
L.
,
Huang
,
Q.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2013
, “
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
,”
ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
.
73.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
. 10.1115/1.4028510
74.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Predictive Modeling of Geometric Deviations of 3D Printed Products-a Unified Modeling Approach for Cylindrical and Polygon Shapes
,”
2014 IEEE International Conference on Automation Science and Engineering (CASE)
,
Taipei, Taiwan
,
Aug. 18–22
, pp.
25
30
.
75.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann.
,
63
(
1
), pp.
137
140
. 10.1016/j.cirp.2014.03.103
76.
Dantan
,
J.-Y.
,
Huang
,
Z.
,
Goka
,
E.
,
Homri
,
L.
,
Etienne
,
A.
,
Bonnet
,
N.
, and
Rivette
,
M.
,
2017
, “
Geometrical Variations Management for Additive Manufactured Product
,”
CIRP Ann.
,
66
(
1
), pp.
161
164
. 10.1016/j.cirp.2017.04.034
77.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2019
, “
Statistical Modal Analysis for Out-of-Plane Deviation Prediction in Additive Manufacturing Based on Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111011
. 10.1115/1.4044837
80.
Bugatti
,
M.
, and
Semeraro
,
Q.
,
2018
, “
Limitations of the Inherent Strain Method in Simulating Powder Bed Fusion Processes
,”
Addit. Manuf.
,
23
, pp.
329
346
. 10.1016/j.addma.2018.05.041
81.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
82.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. B
,
231
(
1
), pp.
96
117
. 10.1177/0954405414567522
83.
Stavropoulos
,
P.
, and
Foteinopoulos
,
P.
,
2018
, “
Modelling of Additive Manufacturing Processes: A Review and Classification
,”
Manuf. Rev.
,
5
, p.
2
. 10.1051/mfreview/2017014
84.
Liu
,
J.
,
Jalalahmadi
,
B.
,
Guo
,
Y.
,
Sealy
,
M. P.
, and
Bolander
,
N.
,
2018
, “
A Review of Computational Modeling in Powder-Based Additive Manufacturing for Metallic Part Qualification
,”
Rapid Prototyping J.
,
24
(
8
), pp.
1245
1264
. 10.1108/rpj-04-2017-0058
85.
Wiberg
,
A.
,
Persson
,
J.
, and
Olvander
,
J.
,
2019
, “
Design for Additive Manufacturing—A Review of Available Design Methods and Software
,”
Rapid Prototyping J.
,
25
(
6
), pp.
1080
1094
. 10.1108/rpj-10-2018-0262
86.
Kamal
,
M.
, and
Rizza
,
G.
,
2019
, “Design for Metal Additive Manufacturing for Aerospace Applications,”
Additive Manufacturing for the Aerospace Industry
,
Elsevier
,
New York
, pp.
67
86
.
87.
Zuowei
,
Z.
,
Keimasi
,
S.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Lihong
,
Q.
,
2017
, “Review of Shape Deviation Modeling for Additive Manufacturing,”
Advances on Mechanics, Design Engineering and Manufacturing
,
Springer
,
New York
, pp.
241
250
.
You do not currently have access to this content.