Abstract
The paper considers fluid convection in low-temperature grinding. Fluid cooling often predominates over all other forms of heat dispersion in the grinding zone particularly in low-temperature grinding. Experimental values of convection heat transfer coefficient (CHTC) up to and in excess of 200,000 W/m2K have been found by various researchers both for water-based emulsions and in one case for mineral oils employed in high wheel-speed grinding. Several convection models have been developed in recent years for the prediction of CHTCs in low-temperature grinding. This paper reviews advances in convection modeling and reconsiders the basic assumptions implied. A proposal is made for improved estimation for highly churned flow assuming a degree of fluid warming. Predicted coefficients are compared with measured values.