Abstract

Thermo-mechanical models, based on the discretization of the heat transfer and elasticity equations, enable the analysis and optimization of the thermal design of machine tools. This work investigates the thermo-mechanical response of a five-axis precision machine tool to fluctuations of the environmental temperature. To increase the computational efficiency of the thermo-mechanical model, a surrogate model by means of projection-based model order reduction (MOR) is created. This article uses the parametric Krylov Modal Subspace (KMS) method, which enables the evaluation of the thermo-mechanical response of the machine tool for different values of the parameters describing the convective boundary conditions. The thermo-mechanical model is validated comparing the simulated and measured response of the machine tool to a step in the environmental temperature. The validation process uses the global sensitivity analysis (GSA) to determine the convective boundary conditions with the largest impact on the thermally induced deviations. The reduced-order model ensures the computational tractability of the Monte Carlo simulation associated with the sensitivity analysis and parameter identification. The validated thermo-mechanical model is used to investigate the thermo-mechanical design of the machine tool.

References

1.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann.
,
57
(
2
), pp.
660
675
. 10.1016/j.cirp.2008.09.008
2.
Bryan
,
J.
,
1990
, “
International Status of Thermal Error Research (1990)
,”
CIRP Ann. Manuf. Technol.
,
39
(
2
), pp.
645
656
. 10.1016/S0007-8506(07)63001-7
3.
Mayr
,
J.
,
Blaser
,
P.
,
Ryser
,
A.
, and
Hernandez-Becerro
,
P.
,
2018
, “
An Adaptive Self-Learning Compensation Approach for Thermal Errors on 5-Axis Machine Tools Handling an Arbitrary Set of Sample Rates
,”
CIRP Ann.
,
67
(
1
), pp.
551
554
. 10.1016/j.cirp.2018.04.001
4.
Gomez-Acedo
,
E.
,
Olarra
,
A.
,
Orive
,
J.
, and
Lopez de la Calle
,
L. N.
,
2013
, “
Methodology for the Design of a Thermal Distortion Compensation for Large Machine Tools Based in State-Space Representation With Kalman Filter
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
100
108
. 10.1016/j.ijmachtools.2013.09.005
5.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Donmez
,
M. A.
,
Knapp
,
W.
,
Härtig
,
F.
,
Wendt
,
K.
,
Moriwaki
,
T.
,
Shore
,
P.
,
Schmitt
,
R.
,
Brecher
,
C.
,
Würz
,
T.
, and
Wegener
,
K.
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
61
(
2
), pp.
771
791
. 10.1016/j.cirp.2012.05.008
6.
Shi
,
H.
,
Ma
,
C.
,
Yang
,
J.
,
Zhao
,
L.
,
Mei
,
X.
, and
Gong
,
G.
,
2015
, “
Investigation Into Effect of Thermal Expansion on Thermally Induced Error of Ball Screw Feed Drive System of Precision Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
60
71
. 10.1016/j.ijmachtools.2015.07.003
7.
Wu
,
C.-H.
, and
Kung
,
Y.-T.
,
2003
, “
Thermal Analysis for the Feed Drive System of a CNC Machine Center
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1521
1528
. 10.1016/j.ijmachtools.2003.08.008
8.
Mori
,
M.
,
Mizuguchi
,
H.
,
Fujishima
,
M.
,
Ido
,
Y.
,
Mingkai
,
N.
, and
Konishi
,
K.
,
2009
, “
Design Optimization and Development of CNC Lathe Headstock to Minimize Thermal Deformation
,”
CIRP Ann.
,
58
(
1
), pp.
331
334
. 10.1016/j.cirp.2009.03.033
9.
Holkup
,
T.
,
Cao
,
H.
,
Kolář
,
P.
,
Altintas
,
Y.
, and
Zelený
,
J.
,
2010
, “
Thermo-Mechanical Model of Spindles
,”
CIRP Ann.
,
59
(
1
), pp.
365
368
. 10.1016/j.cirp.2010.03.021
10.
Sun
,
L.
,
Ren
,
M.
,
Hong
,
H.
, and
Yin
,
Y.
,
2017
, “
Thermal Error Reduction Based on Thermodynamics Structure Optimization Method for an Ultra-Precision Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5
), pp.
1267
1277
. 10.1007/s00170-016-8868-x
11.
Shi
,
X.
,
Zhu
,
K.
,
Wang
,
W.
,
Fan
,
L.
, and
Gao
,
J.
,
2018
, “
A Thermal Characteristic Analytic Model Considering Cutting Fluid Thermal Effect for Gear Grinding Machine Under Load
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5
), pp.
1755
1769
. 10.1007/s00170-018-2562-0
12.
Mian
,
N. S.
,
Fletcher
,
S.
,
Longstaff
,
A.
, and
Myers
,
A.
,
2013
, “
Efficient Estimation by FEA of Machine Tool Distortion Due to Environmental Temperature Perturbations
,”
Precis. Eng.
,
37
(
2
), pp.
372
379
. 10.1016/j.precisioneng.2012.10.006
13.
Weng
,
L.
,
Gao
,
W.
,
Lv
,
Z.
,
Zhang
,
D.
,
Liu
,
T.
,
Wang
,
Y.
,
Qi
,
X.
, and
Tian
,
Y.
,
2018
, “
Influence of External Heat Sources on Volumetric Thermal Errors of Precision Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1
), pp.
475
495
. 10.1007/s00170-018-2462-3
14.
Mayr
,
J.
,
Ess
,
M.
,
Pavliček
,
F.
,
Weikert
,
S.
,
Spescha
,
D.
, and
Knapp
,
W.
,
2015
, “
Simulation and Measurement of Environmental Influences on Machines in Frequency Domain
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
479
482
. 10.1016/j.cirp.2015.04.001
15.
Ess
,
M.
,
2012
, “
Simulation and Compensation of Thermal Errors of Machine Tools
,” Ph.D. thesis, Dissertation,
ETH Zürich
,
Nr. 20300
,
Zurich, Switzerland
.
16.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
. 10.1137/130932715
17.
Herzog
,
R.
,
Riedel
,
I.
, and
Uciński
,
D.
,
2018
, “
Optimal Sensor Placement for Joint Parameter and State Estimation Problems in Large-Scale Dynamical Systems With Applications to Thermo-Mechanics
,”
Optim. Eng.
,
19
(
3
), pp.
591
627
. 10.1007/s11081-018-9391-8
18.
Benner
,
P.
,
Herzog
,
R.
,
Lang
,
N.
,
Riedel
,
I.
, and
Saak
,
J.
,
2019
, “
Comparison of Model Order Reduction Methods for Optimal Sensor Placement for Thermo-Elastic Models
,”
Eng. Optim.
,
51
(
3
), pp.
465
483
. 10.1080/0305215X.2018.1469133
19.
Naumann
,
A.
,
Lang
,
N.
,
Partzsch
,
M.
,
Beitelschmidt
,
M.
,
Benner
,
P.
,
Voigt
,
A.
, and
Wensch
,
J.
,
2016
, “
Computation of Thermo-Elastic Deformations on Machine Tools a Study of Numerical Methods
,”
Prod. Eng.
,
10
(
3
), pp.
253
263
. 10.1007/s11740-016-0674-7
20.
Lang
,
N.
,
Saak
,
J.
, and
Benner
,
P.
,
2014
, “
Model Order Reduction for Systems With Moving Loads
,”
at-Automatisierungstechnik
,
62
(
7
), pp.
512
522
. 10.1515/auto-2014-1095
21.
Hernández-Becerro
,
P.
,
Spescha
,
D.
, and
Wegener
,
K.
,
2020
, “
Model Order Reduction of Thermo-Mechanical Models With Parametric Convective Boundary Conditions: Focus on Machine Tool
,” https://arxiv.org/abs/2004.02586.
22.
Spescha
,
D.
,
2018
, “
Framework for Efficient and Accurate Simulation of the Dynamics of Machine Tools
,” Ph.D. thesis,
TU Clausthal
,
Clausthal, Germany
.
23.
inspire AG, 2020, MORe
, https://www.more-simulations.ch/
24.
ISO 10791, 2015
, “
Test Conditions for Machining Centres—Part 1: Geometric Tests for Machines With Horizontal Spindle (Horizontal Z-Axis)
,”
International Organization for Standardization
,
Geneva, Switzerland
,
Technical Report, ISO 10971-1:2015
.
25.
ISO 230, 2007
, “
Test Code for Machine Tools—Part 3: Determination of Thermal Effects
,”
International Organization for Standardization
,
Geneva, Switzerland
,
Technical Report, ISO 230-3:2007
.
26.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Halsted Press
,
New York
.
27.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “UQLAB: A Framework for Uncertainty Quantification in Matlab,”,
Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management
, pp.
2554
2563
.
28.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
,
The Second IMACS Seminar on Monte Carlo Methods
. 10.1016/S0378-4754(00)00270-6
29.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “A Review on Global Sensitivity Analysis Methods,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
Springer US
, pp.
101
122
(
around 30
).
30.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
,
Bayesian Networks in Dependability
. 10.1016/j.ress.2007.04.002
You do not currently have access to this content.