Abstract

Resistance spot welding (RSW) of aluminum–aluminum (Al–Al) is known to be very challenging, with the asymmetric growth of the weld nugget often observed. In this article, a semicoupled electrical–thermal–mechanical finite element analysis (FEA) procedure was established to simulate the RSW of two layers of AA6022-T4 sheets using a specially designed Multi-Ring Domed (MRD) electrodes. Critical to the modeling procedure was the thermoelectric (including the Peltier, Thomson, and Seebeck effects) analyses to simulate the asymmetric nugget growth in the welding stage. Key input parameters such as the Seebeck coefficients and high-temperature flow stress curves were measured. Simulation results, experimentally validated, indicated that the newly developed procedure could successfully predict the asymmetric weld nugget growth. Simulation results also showed the Seebeck effect in the holding stage. The simulations represent the first quantitative investigation of the impact of the thermoelectric effects on resistance spot welding.

References

1.
Cai
,
W.
,
Daehn
,
G.
,
Vivek
,
A.
,
Li
,
J.
,
Khan
,
H.
,
Mishra
,
R. S.
, and
Komarasamy
,
M.
,
2019
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031012
. 10.1115/1.4041182
2.
Gould
,
J.
, “
Challenges and Advances in Resistance Spot Welding Aluminum Sheet
,” EWI Report, April 28, 2014.
3.
Sigler
,
D. R.
,
Carlson
,
B. E.
, and
Janiak
,
P.
,
2014
, “
A Preliminary Assessment of GM’s Multi-Ring Domed (MRD) Electrode for Alternately Welding Aluminum-to-Aluminum and Steel-to-Steel Stack-ups
,”
AWS Sheet Metal Welding Conference XVI
,
AWS
,
Livonia, MI
,
Oct. 22–24
.
4.
Rashid
,
M.
,
2011
, “
Some Tribological Influences on the Electrode-Worksheet Interface During Resistance Spot Welding of Aluminum Alloys
,”
J. Mater. Eng. Perform.
,
20
(
3
), pp.
456
462
. 10.1007/s11665-010-9696-z
5.
Sigler
,
D. R.
,
Carlson
,
B. E.
, and
Janiak
,
P.
,
2013
, “
Improving Aluminum Resistance Spot Welding in Automotive Structures
,”
Weld. J.
,
92
(
6
), pp.
64
72
.
6.
Sigler
,
D. R.
, and
Carlson
,
B. E.
,
2012
, “
Aluminum Resistance Spot Welding Electrode Degradation
,”
AWS Sheet Metal Welding Conference XV
,
Livonia, MI
,
Oct. 2–5
.
7.
Sigler
,
D. R.
,
Schroth
,
J. G.
,
Karagoulis
,
M. J.
, and
Zuo
,
D.
,
2010
, “
New Electrode Weld Face Geometries for Spot Welding Aluminum
,”
AWS Sheet Metal Welding Conference XIV
,
Livonia, MI
,
May 11–14
, pp.
11
14
.
8.
Deng
,
L.
,
Li
,
Y. B.
,
Carlson
,
B. E.
, and
Sigler
,
D. R.
,
2018
, “
Effects of Electrode Surface Topography on Aluminum Resistance Spot Welding
,”
Weld. J.
,
97
(
4
), pp.
120
132
. 10.29391/2018.97.011
9.
Sigler
,
D. R.
, and
Karagoulis
,
M. J.
,
2018
, “
Weld Schedule for Resistance Spot Welding of Aluminum Alloy Workpieces
,” US Patent No. 9,969,026.
10.
Balder
,
T. C.
,
1959
, “
Influence of the Peltier Effect in Resistance Welding
,”
Philips Tech. Rev.
,
20
, pp.
188
192
.
11.
Hasir
,
M. A.
,
1984
, “
Study of the Peltier Effect in the Resistance Spot Welding of Very Thin-Gauge Sheet Electroplated With Tin Using Tungsten-Insert Electrodes
,”
Weld. Cutting
,
36
(
3
), pp.
116
121
.
12.
Knorovsky
,
G. A.
,
1991
,
Overlooked Fundamentals of Resistance Welding (No. SAND-91-1756C; CONF-911003-15)
,
Sandia National Laboratories
,
Albuquerque, NM
.
13.
Zhou
,
Y.
,
Dong
,
S. J.
, and
Ely
,
K. J.
,
2001
, “
Weldability of Thin Sheet Metals by Small-Scale Resistance Spot Welding Using High-Frequency Inverter and Capacitor-Discharge Power Supplies
,”
J. Electron. Mater.
,
30
(
8
), pp.
1012
1020
. 10.1007/BF02657726
14.
Peng
,
J.
,
Fukumoto
,
S.
,
Brown
,
L.
, and
Zhou
,
N.
,
2004
, “
Image Analysis of Electrode Degradation in Resistance Spot Welding of Aluminum
,”
Sci. Technol. Weld. Joining
,
9
(
4
), pp.
331
336
. 10.1179/136217104225012256
15.
Li
,
Y.
,
Yan
,
F.
,
Luo
,
Z.
,
Chao
,
Y. J.
,
Ao
,
S.
, and
Cui
,
X.
,
2015
, “
Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
24
(
6
), pp.
2546
2555
. 10.1007/s11665-015-1519-9
16.
Khan
,
J. A.
,
Xu
,
L.
, and
Chao
,
Y. J.
,
1999
, “
Prediction of Nugget Development During Resistance Spot Welding Using Coupled Thermal–Electrical–Mechanical Model
,”
Sci. Technol. Weld. Joining
,
4
(
4
), pp.
201
207
. 10.1179/136217199101537789
17.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Hu
,
S. J.
, and
Chen
,
G. L.
,
2007
, “
Numerical Analysis of Magnetic Fluid Dynamics Behaviors During Resistance Spot Welding
,”
J. Appl. Phys.
,
101
(
5
), p.
053506
. 10.1063/1.2472279
18.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Shen
,
Q.
, and
Lai
,
X. M.
,
2011
, “
Numerical Analysis of Transport Phenomena in Resistance Spot Welding Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031019
. 10.1115/1.4004319
19.
Wintjes
,
E.
,
DiGiovanni
,
C.
,
He
,
L.
,
Bag
,
S.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2019
, “
Effect of Multiple Pulse Resistance Spot Welding Schedules on Liquid Metal Embrittlement Severity
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101001
. 10.1115/1.4044099
20.
Browne
,
D. J.
,
Chandler
,
H. W.
,
Evans
,
J. T.
, and
Wen
,
J.
,
1995
, “
Computer Simulation of Resistance Spot Welding in Aluminum: Part 1
,”
Weld. J.
,
74
(
10
), pp.
339
344
.
21.
Xu
,
L.
, and
Khan
,
J. A.
,
1999
, “
Nugget Growth Model for Aluminum Alloys During Resistance Spot Welding
,”
Weld. J.
,
78
(
11
), pp.
367
372
.
22.
Sun
,
X.
, and
Dong
,
P.
,
2000
, “
Analysis of Aluminum Resistance Spot Welding Processes Using Coupled Finite Element Procedures
,”
Weld. J.
,
79
(
8
), pp.
215s
221
.
23.
Mo
,
B. H.
,
Zhang
,
X. F.
,
Wu
,
J. Q.
, and
Guo
,
Z. N.
,
2012
, “
Numerical Simulation on the Temperature Distribution in Resistance Microwelding of Insulated Cu Wire
,”
Advanced Materials Research
,
472–475
, pp.
1143
1146
.
24.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1984
,
Electrodynamics of Continuous Media
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
.
25.
Zhang
,
W.
, and
Bay
,
N.
,
1998
, “
Finite Element Modeling Aided Process Design in Resistance Welding
,”
Eighth International Conference of Computer Technology in Welding
,
Liverpool, UK
,
June 22–24
, pp.
153
163
.
26.
James
,
P. S.
,
Chandler
,
H. W.
,
Evans
,
J. T.
,
Wen
,
J.
,
Browne
,
D. J.
, and
Newton
,
C. J.
,
1997
, “
The Effect of Mechanical Loading on the Contact Resistance of Coated Aluminum
,”
Mater. Sci. Eng. A
,
230
(
1–2
), pp.
194
201
. 10.1016/S0921-5093(97)00020-8
27.
Wan
,
Z.
,
Wang
,
H. P.
,
Wang
,
M.
,
Carlson
,
B. E.
, and
Sigler
,
D. R.
,
2016
, “
Numerical Simulation of Resistance Spot Welding of Al To Zinc-Coated Steel With Improved Representation of Contact Interactions
,”
Int. J. Heat Mass Transfer
,
101
, pp.
749
763
. 10.1016/j.ijheatmasstransfer.2016.05.023
28.
Huang
,
H.
,
Yin
,
X.
,
Feng
,
Z.
, and
Ma
,
N.
,
2019
, “
Finite Element Analysis and In-Situ Measurement of Out-of-Plane Distortion in Thin Plate TIG Welding
,”
Materials
,
12
(
1
), p.
141
. 10.3390/ma12010141
29.
Brandt
,
R.
, and
Neuer
,
G.
,
2007
, “
Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and Above the Melting Temperature
,”
Int. J. Thermophys.
,
28
(
5
), pp.
1429
1446
. 10.1007/s10765-006-0144-0
30.
Wang
,
J.
,
Wang
,
H. P.
,
Lu
,
F.
,
Carlson
,
B. E.
, and
Sigler
,
D. R.
,
2015
, “
Analysis of Al-Steel Resistance Spot Welding Process by Developing a Fully Coupled Multi-Physics Simulation Model
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1061
1072
. 10.1016/j.ijheatmasstransfer.2015.05.086
31.
Niedziolka
,
K.
,
Pothin
,
R.
,
Rouessac
,
F.
,
Ayral
,
R. M.
, and
Jund
,
P.
,
2014
, “
Theoretical and Experimental Search for ZnSb-Based Thermoelectric Materials
,”
J. Phys. Condens. Matter
,
26
(
36
), p.
365401
. 10.1088/0953-8984/26/36/365401
32.
Fukumoto
,
S.
,
Lum
,
I.
,
Biro
,
E.
,
Boomer
,
D. R.
, and
Zhou
,
Y.
,
2003
, “
Effects of Electrode Degradation on Electrode Life in Resistance Spot Welding of Aluminum Alloy 5182
,”
Weld. J.
,
82
(
13
), pp.
307
312
.
33.
Lum
,
I.
,
Biro
,
E.
,
Zhou
,
Y.
,
Fukumoto
,
S.
, and
Boomer
,
D. R.
,
2004
, “
Electrode Pitting in Resistance Spot Welding of Aluminum Alloy 5182
,”
Metall. Mater. Trans. A
,
35
(
1
), pp.
217
226
. 10.1007/s11661-004-0122-8
You do not currently have access to this content.