Abstract

Binder jetting is an additive manufacturing process utilizing a liquid-based binding agent to selectively join the material in a powder bed. It is capable of manufacturing complex-shaped parts from a variety of materials including metals, ceramics, and polymers. This paper provides a comprehensive review on currently available reports on metal binder jetting from both academia and industry. Critical factors and their effects in metal binder jetting are reviewed and divided into two categories, namely material-related factors and process-related parameters. The reported data on density, dimensional and geometric accuracy, and mechanical properties achieved by metal binder jetting are summarized. With parameter optimization and a suitable sintering process, ten materials have been proven to achieve a relative density of higher than 90%. Indepth discussion is provided regarding densification as a function of various attributes of powder packing, printing, and post-processing. A few grades of stainless steel obtained equivalent or superior mechanical properties compared to cold working. Although binder jetting has gained its popularity in the past several years, it has not been sufficiently studied compared with other metal additive manufacturing (AM) processes such as powder bed fusion and directed energy deposition. Some aspects that need further research include the understanding of powder spreading process, binder-powder interaction, and part shrinkage.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
2.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
. 10.1007/s11465-013-0248-8
3.
Kumar
,
A.
,
Mandal
,
S.
,
Barui
,
S.
,
Vasireddi
,
R.
,
Gbureck
,
U.
,
Gelinsky
,
M.
, and
Basu
,
B.
,
2016
, “
3D Printing of Ceramic Implants
,”
Mater. Sci. Eng. R: Rep.
,
103
, pp.
1
39
. 10.1016/j.mser.2016.01.001
4.
Ohji
,
T.
,
2018
, “
Additive Manufacturing of Ceramic Components
,”
Synthesiology
,
11
(
2
), pp.
81
93
. 10.5571/synth.11.2_81
5.
Song
,
Y.
,
Yan
,
Y.
,
Zhang
,
R.
,
Xu
,
D.
, and
Wang
,
F.
,
2002
, “
Manufacture of the Die of an Automobile Deck Part Based on Rapid Prototyping and Rapid Tooling Technology
,”
J. Mater. Process. Technol.
,
120
(
1–3
), pp.
237
242
. 10.1016/S0924-0136(01)01165-7
6.
Thomas
,
C. L.
,
Gaffney
,
T. M.
,
Kaza
,
S.
, and
Lee
,
C. H.
,
1996
, “
Rapid Prototyping of Large Scale Aerospace Structures
,”
1996 IEEE Aerospace Applications Conference
,
Aspen, CO
,
Feb. 10
, pp.
219
230
.
7.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
).
8.
Du
,
W.
,
Ren
,
X.
,
Ma
,
C.
, and
Pei
,
Z.
,
2017
, “
Binder Jetting Additive Manufacturing of Ceramics: A Literature Review
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, p. V014T007A006.
9.
Du
,
W.
,
Ren
,
X.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
040801
. 10.1115/1.4046248
10.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2018
, “
Binder Jetting Additive Manufacturing of Metals: A Literature Review
,”
ASME 2019 International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, p. V001T001A033.
11.
Medellin
,
A.
,
Du
,
W.
,
Miao
,
G.
,
Zou
,
J.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review
,”
ASME J. Micro Nano-Manuf.
,
7
(
3
), p.
031006
. 10.1115/1.4044288
12.
ASTM International
,
2015
, “
ISO/ASTM 52900: Additive Manufacturing-General Principles-Terminology
,” ASTM International, West Conshohocken, PA.
13.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
.
14.
Ren
,
X.
,
Shao
,
H.
,
Lin
,
T.
, and
Zheng
,
H. J.
,
2016
, “
3D Gel-Printing—An Additive Manufacturing Method for Producing Complex Shape Parts
,”
Mater. Des.
,
101
, pp.
80
87
. 10.1016/j.matdes.2016.03.152
15.
White
,
D.
, and
Carmein
,
D. E. E.
,
2003
, “
Ultrasonic Object Consolidation
,”
Solidica Inc
, U.S. Patent No. 6519500.
16.
White
,
D.
, and
Carmein
,
D. E.
,
2002
, “
Ultrasonic Object Consolidation System and Method
,”
Solidica Inc.
, U.S. Patent No. 6463349.
17.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
. 10.1016/j.pmatsci.2015.03.002
18.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
. 10.1016/j.jmatprotec.2003.11.051
19.
Moat
,
R. J.
,
Pinkerton
,
A. J.
,
Li
,
L.
,
Withers
,
P. J.
, and
Preuss
,
M.
,
2011
, “
Residual Stresses in Laser Direct Metal Deposited Waspaloy
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2288
2298
. 10.1016/j.msea.2010.12.010
20.
Yu
,
T.
,
Li
,
M.
,
Breaux
,
A.
,
Atri
,
M.
,
Obeidat
,
S.
, and
Ma
,
C.
,
2019
, “
Experimental and Numerical Study on Residual Stress and Geometric Distortion in Powder Bed Fusion Process
,”
J. Manuf. Processes
,
46
, pp.
214
224
. 10.1016/j.jmapro.2019.09.010
21.
Jiang
,
R.
,
Mostafaei
,
A.
,
Pauza
,
J.
,
Kantzos
,
C.
, and
Rollett
,
A. D.
,
2019
, “
Varied Heat Treatments and Properties of Laser Powder Bed Printed Inconel 718
,”
Mater. Sci. Eng.: A
,
755
, pp.
170
180
. 10.1016/j.msea.2019.03.103
22.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyping J.
,
21
(
2
), pp.
177
185
. 10.1108/RPJ-12-2014-0180
23.
Mostafaei
,
A.
,
Toman
,
J.
,
Stevens
,
E. L.
,
Hughes
,
E. T.
,
Krimer
,
Y. L.
, and
Chmielus
,
M.
,
2017
, “
Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder Jet Printed Samples From Gas- and Water-Atomized Alloy 625 Powders
,”
Acta Mater.
,
124
, pp.
280
289
. 10.1016/j.actamat.2016.11.021
24.
Nandwana
,
P.
,
Elliott
,
A. M.
,
Siddel
,
D.
,
Merriman
,
A.
,
Peter
,
W. H.
, and
Babu
,
S. S.
,
2017
, “
Powder Bed Binder Jet 3D Printing of Inconel 718: Densification, Microstructural Evolution and Challenges⋆
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
207
218
. 10.1016/j.cossms.2016.12.002
25.
ExOne
, “
ExOne X1 160PRO™
”, https://www.exone.com/en-US/X1-160Pro-(1), Accessed May 2020.
26.
Desktop Metal
, “
Production System™
”, https://www.desktopmetal.com/products/production, Accessed May 2020.
27.
Digital Metal
, “
DIGITAL METAL®DM P2500
”, https://digitalmetal.tech/printer-line/dm-p2500/, Accessed May 2020.
28.
Abd-Elghany
,
K.
, and
Bourell
,
D.
,
2012
, “
Property Evaluation of 304L Stainless Steel Fabricated by Selective Laser Melting
,”
Rapid Prototyping J.
,
18
(
5
), pp.
420
428
. 10.1108/13552541211250418
29.
Li
,
S.
,
Wei
,
Q.
,
Shi
,
Y.
,
Zhu
,
Z.
, and
Zhang
,
D.
,
2015
, “
Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting
,”
J. Mater. Sci. Technol.
,
31
(
9
), pp.
946
952
. 10.1016/j.jmst.2014.09.020
30.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
. 10.1016/j.jmatprotec.2010.09.019
31.
Rafi
,
H.
,
Karthik
,
N.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
. 10.1007/s11665-013-0658-0
32.
Murr
,
L. E.
,
2015
, “
Metallurgy of Additive Manufacturing: Examples From Electron Beam Melting
,”
Addit. Manuf.
,
5
, pp.
40
53
. 10.1016/j.addma.2014.12.002
33.
Hinojos
,
A.
,
Mireles
,
J.
,
Reichardt
,
A.
,
Frigola
,
P.
,
Hosemann
,
P.
,
Murr
,
L. E.
, and
Wicker
,
R. B.
,
2016
, “
Joining of Inconel 718 and 316 Stainless Steel Using Electron Beam Melting Additive Manufacturing Technology
,”
Mater. Des.
,
94
, pp.
17
27
. 10.1016/j.matdes.2016.01.041
34.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
. 10.1016/S1005-0302(12)60016-4
35.
Murr
,
L. E.
,
Martinez
,
E.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
,
Hernandez
,
J.
,
Ramirez
,
D. A.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2012
, “
Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science
,”
J. Mater. Res. Technol.
,
1
(
1
), pp.
42
54
. 10.1016/S2238-7854(12)70009-1
36.
Murr
,
L. E.
,
Martinez
,
E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Machado
,
B. I.
,
Shindo
,
P. W.
,
Martinez
,
J. L.
,
Medina
,
F.
,
Wooten
,
J.
,
Ciscel
,
D.
,
Ackelid
,
U.
, and
Wicker
,
R. B.
,
2011
, “
Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3491
3508
. 10.1007/s11661-011-0748-2
37.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Tribological Performance of Selective Laser Melted 316L Stainless Steel
,”
Tribol. Int.
,
128
, pp.
121
129
. 10.1016/j.triboint.2018.07.021
38.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Effect of Process Parameters on Tribological Performance of 316L Stainless Steel Parts Fabricated by Selective Laser Melting
,”
Manuf. Lett.
,
16
, pp.
36
39
. 10.1016/j.mfglet.2018.04.003
39.
Li
,
M.
,
Fang
,
A.
,
Martinez-Franco
,
E.
,
Alvarado-Orozco
,
J.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Selective Laser Melting of Metal Matrix Composites: Feedstock Powder Preparation by Electroless Plating
,”
Mater. Lett.
,
247
, pp.
115
118
. 10.1016/j.matlet.2019.03.092
40.
Graybill
,
B.
,
Li
,
M.
,
Malawey
,
D.
,
Ma
,
C.
,
Alvarado-Orozco
,
J.-M.
, and
Martinez-Franco
,
E.
,
2018
, “
Additive Manufacturing of Nickel-Based Superalloys
,”
13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, p. V001T001A015.
41.
Wang
,
Z.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2016
, “
Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
110
, pp.
226
235
. 10.1016/j.actamat.2016.03.019
42.
Carroll
,
B. E.
,
Otis
,
R. A.
,
Borgonia
,
J. P.
,
Suh
,
J.-o.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
Hofmann
,
D. C.
,
Liu
,
Z.-K.
, and
Beese
,
A. M.
,
2016
, “
Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling
,”
Acta Mater.
,
108
, pp.
46
54
. 10.1016/j.actamat.2016.02.019
43.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
. 10.1016/j.addma.2015.07.001
44.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
45.
Fujishima
,
M.
,
Oda
,
Y.
,
Ashida
,
R.
,
Takezawa
,
K.
, and
Kondo
,
M.
,
2017
, “
Study on Factors for Pores and Cladding Shape in the Deposition Processes of Inconel 625 by the Directed Energy Deposition (DED) Method
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
200
204
. 10.1016/j.cirpj.2017.04.003
46.
Arrizubieta
,
J. I.
,
Lamikiz
,
A.
,
Cortina
,
M.
,
Ukar
,
E.
, and
Alberdi
,
A.
,
2018
, “
Hardness, Grainsize and Porosity Formation Prediction on the Laser Metal Deposition of AISI 304 Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
53
64
. 10.1016/j.ijmachtools.2018.08.004
47.
Beese
,
A. M.
, and
Carroll
,
B. E.
,
2015
, “
Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock
,”
JOM
,
68
(
3
), pp.
724
734
. 10.1007/s11837-015-1759-z
48.
Reichardt
,
A.
,
Dillon
,
R. P.
,
Borgonia
,
J. P.
,
Shapiro
,
A. A.
,
McEnerney
,
B. W.
,
Momose
,
T.
, and
Hosemann
,
P.
,
2016
, “
Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated With Laser Deposition Additive Manufacturing
,”
Mater. Des.
,
104
, pp.
404
413
. 10.1016/j.matdes.2016.05.016
49.
Puppala
,
G.
,
Moitra
,
A.
,
Sathyanarayanan
,
S.
,
Kaul
,
R.
,
Sasikala
,
G.
,
Prasad
,
R. C.
, and
Kukreja
,
L. M.
,
2014
, “
Evaluation of Fracture Toughness and Impact Toughness of Laser Rapid Manufactured Inconel-625 Structures and Their Co-relation
,”
Mater. Des.
,
59
, pp.
509
515
. 10.1016/j.matdes.2014.03.013
50.
Javidani
,
M.
,
Arreguin-Zavala
,
J.
,
Danovitch
,
J.
,
Tian
,
Y.
, and
Brochu
,
M.
,
2016
, “
Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization
,”
J. Therm. Spray Technol.
,
26
(
4
), pp.
587
597
. 10.1007/s11666-016-0495-4
51.
Guo
,
P.
,
Zou
,
B.
,
Huang
,
C.
, and
Gao
,
H.
,
2017
, “
Study on Microstructure, Mechanical Properties and Machinability of Efficiently Additive Manufactured AISI 316L Stainless Steel by High-Power Direct Laser Deposition
,”
J. Mater. Process. Technol.
,
240
, pp.
12
22
. 10.1016/j.jmatprotec.2016.09.005
52.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2012
, “
Analyzing Product Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing
,”
23rd Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
177
188
.
53.
Do
,
T.
,
Shin
,
C. S.
,
Stetsko
,
D.
,
VanConant
,
G.
,
Vartanian
,
A.
,
Pei
,
S.
, and
Kwon
,
P.
,
2015
, “
Improving Structural Integrity with Boron-Based Additives for 3D Printed 420 Stainless Steel
,”
Proc. Manuf.
,
1
, pp.
263
272
. 10.1016/j.promfg.2015.09.019
54.
Zhang
,
Y.
,
Wu
,
L.
,
Guo
,
X.
,
Kane
,
S.
,
Deng
,
Y.
,
Jung
,
Y.-G.
,
Lee
,
J.-H.
, and
Zhang
,
J. J.
,
2018
, “
Additive Manufacturing of Metallic Materials: A Review
,”
J. Mater. Eng. Perform.
,
27
(
1
), pp.
1
13
. 10.1007/s11665-017-2747-y
55.
Dini
,
F.
,
Ghaffari
,
S. A.
,
Jafar
,
J.
,
Hamidreza
,
R.
, and
Marjan
,
S. J.
,
2019
, “
A Review of Binder jet Process Parameters; Powder, Binder, Printing and Sintering Condition
,”
Met. Powder Rep.
,
75
(
2
), pp.
95
100
. 10.1016/j.mprp.2019.05.001
56.
Lores
,
A.
,
Azurmendi
,
N.
,
Agote
,
I.
, and
Zuza
,
E.
,
2019
, “
A Review on Recent Developments in Binder Jetting Metal Additive Manufacturing: Materials and Process Characteristics
,”
Powder Metall.
,
62
(
5
), pp.
267
296
. 10.1080/00325899.2019.1669299
57.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
. 10.1016/j.addma.2019.05.031
58.
Wieland
,
S.
, and
Petzoldt
,
F.
,
2016
, “
Binder Jet 3D-Printing for Metal Additive Manufacturing: Applications and Innovative Approaches
,”
CFI Ceram. Forum Int. 93
, pp.
E26
E30
.
59.
Mirzababaei
,
S.
, and
Pasebani
,
S.
,
2019
, “
A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel
,”
J. Manuf. Mater. Process.
,
3
(
3
), p.
82
. 10.3390/jmmp3030082
60.
Utela
,
B.
,
Storti
,
D.
,
Anderson
,
R.
, and
Ganter
,
M.
,
2008
, “
A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP)
,”
J. Manuf. Process.
,
10
(
2
), pp.
96
104
. 10.1016/j.jmapro.2009.03.002
61.
Utela
,
B. R.
,
Storti
,
D.
,
Anderson
,
R. L.
, and
Ganter
,
M.
,
2010
, “
Development Process for Custom Three-Dimensional Printing (3DP) Material Systems
,”
J. Manuf. Sci. Eng.
,
132
(
1
), p.
011008
. 10.1115/1.4000713
62.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2015
, “
Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals
,”
2015 Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
758
771
.
63.
Kumar
,
A.
,
Bai
,
Y.
,
Eklund
,
A.
, and
Williams
,
C. B.
,
2017
, “
Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting
,”
Proc. Manuf.
,
10
, pp.
935
944
. 10.1016/j.promfg.2017.07.084
64.
Bai
,
Y.
, and
Williams
,
C. B.
,
2017
, “
Binderless Jetting: Additive Manufacturing of Metal Parts via Jetting Nanoparticles
,”
28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
249
260
.
65.
Fang
,
Z. Z.
,
2010
, “Kinetics and Mechanisms of Densification,”
Sintering of Advanced Materials
,
M.
Rahaman
, ed.,
Elsevier
,
New York
, pp.
33
64
.
66.
Fang
,
Z.Z.
,
2010
, “Thermodynamics of Sintering,”
Sintering of Advanced Materials
,
R.
German
, ed.,
Elsevier
,
New York
, pp.
3
32
.
67.
Wheat
,
E.
,
Vlasea
,
M.
,
Hinebaugh
,
J.
, and
Metcalfe
,
C.
,
2018
, “
Sinter Structure Analysis of Titanium Structures Fabricated via Binder Jetting Additive Manufacturing
,”
Mater. Des.
,
156
, pp.
167
183
. 10.1016/j.matdes.2018.06.038
68.
Mostafaei
,
A.
,
De Vecchis
,
P. R.
,
Nettleship
,
I.
, and
Chmielus
,
M.
,
2019
, “
Effect of Powder Size Distribution on Densification and Microstructural Evolution of Binder-Jet 3D-Printed Alloy 625
,”
Mater. Des.
,
162
, pp.
375
383
. 10.1016/j.matdes.2018.11.051
69.
Do
,
T.
,
Kwon
,
P.
, and
Shin
,
C. S.
,
2017
, “
Process Development Toward Full-Density Stainless Steel Parts With Binder Jetting Printing
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
50
60
. 10.1016/j.ijmachtools.2017.04.006
70.
Sun
,
L.
,
Kim
,
Y.-H.
, and
Kwon
,
P.
,
2009
, “
Densification and Properties of 420 Stainless Steel Produced by Three-Dimensional Printing With Addition of Si3N4 Powder
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061001
. 10.1115/1.4000335
71.
Doyle
,
M.
,
Agarwal
,
K.
,
Sealy
,
W.
, and
Schull
,
K.
,
2015
, “
Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420 + Bronze Parts
,”
Proc. Manuf.
,
1
, pp.
251
262
. 10.1016/j.promfg.2015.09.016
72.
Inaekyan
,
K.
,
Paserin
,
V.
,
Bailon-Poujol
,
I.
, and
Brailovski
,
V.
,
2016
, “
Binder-Jetting Additive Manufacturing with Water Atomized Iron Powders
,”
AMPM 2016 Conference on Additive Manufacturing
,
Boston, MA
,
June 2016
, pp.
5
7
.
73.
Sachs
,
E.
,
Wylonis
,
E.
,
Allen
,
S.
,
Cima
,
M.
, and
Guo
,
H.
,
2000
, “
Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process
,”
Polym. Eng. Sci.
,
40
(
5
), pp.
1232
1247
. 10.1002/pen.11251
74.
Crane
,
N. B.
,
Wilkes
,
J.
,
Sachs
,
E.
, and
Allen
,
S. M.
,
2006
, “
Improving Accuracy of Powder-Based SFF Processes by Metal Deposition From a Nanoparticle Dispersion
,”
Rapid Prototyping J.
,
12
(
5
), pp.
266
274
. 10.1108/13552540610707022
75.
Kernan
,
B. D.
,
Sachs
,
E. M.
,
Allen
,
S. M.
,
Lorenz
,
A.
,
Sachs
,
C.
,
Raffenbeul
,
L.
, and
Pettavino
,
A.
,
2005
, “
Homogeneous Steel Infiltration
,”
Metall. Mater. Trans. A
,
36
(
10
), pp.
2815
2827
. 10.1007/s11661-005-0278-x
76.
Lorenz
,
A.
,
Sachs
,
E.
,
Kernan
,
B.
,
Posco
,
S. A.
, and
Rafflenbful
,
L.
,
2004
, “
Densification of a Powder-Metal Skeleton by Transient Liquid-Phase Infiltration
,”
Metall. Mater. Trans. A
,
35
(
2
), pp.
631
640
. 10.1007/s11661-004-0375-2
77.
Lorenz
,
A. M.
,
2002
, “
Transient Liquid-Phase Infiltration of a Powder-Metal Skeleton
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
78.
Bailey
,
A.
,
Merriman
,
A.
,
Elliott
,
A.
, and
Basti
,
M.
,
2016
, “
Preliminary Testing of Nanoparticle Effectiveness in Binder Jetting Applications
,”
27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
1069
1077
.
79.
Chen
,
H.
,
2016
, “
A Process Modelling and Parameters Optimization and Recommendation System for Binder Jetting Additive Manufacturing Process
,”
Ph.D. dissertation
,
McGill University
.
80.
Chen
,
H.
, and
Zhao
,
Y. F.
,
2016
, “
Process Parameters Optimization for Improving Surface Quality and Manufacturing Accuracy of Binder Jetting Additive Manufacturing Process
,”
Rapid Prototyping J.
,
22
(
3
), pp.
527
538
. 10.1108/RPJ-11-2014-0149
81.
Chou
,
D.-T.
,
Wells
,
D.
,
Hong
,
D.
,
Lee
,
B.
,
Kuhn
,
H.
, and
Kumta
,
P. N.
,
2013
, “
Novel Processing of Iron–Manganese Alloy-Based Biomaterials by Inkjet 3-D Printing
,”
Acta Biomater.
,
9
(
10
), pp.
8593
8603
. 10.1016/j.actbio.2013.04.016
82.
Crane
,
N. B.
,
Sachs
,
E. M.
, and
Frank
,
A.
,
2004
, “
Strengthening Porous Skeletons by Metal Deposition From a Nanoparticle Suspension
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
.
83.
Dourandish
,
M.
,
Godlinski
,
D.
, and
Simchi
,
A.
,
2007
, “
3D Printing of Biocompatible PM-Materials
,”
Mater. Sci. Forum
, pp.
534–536
,
453
456
. 10.4028/www.scientific.net/MSF.534-536.453
84.
Elliott
,
A.
,
AlSalihi
,
S.
,
Merriman
,
A. L.
,
Basti
,
M. M.
, and
Sciences
,
A.
,
2016
, “
Infiltration of Nanoparticles Into Porous Binder Jet Printed Parts
,”
Am. J. Eng. Appl. Sci.
,
9
(
1
),
128
133
. 10.3844/ajeassp.2016.128.133
85.
Frykholm
,
R.
,
Takeda
,
Y.
,
Andersson
,
B.-G.
, and
Carlström
,
R.
,
2016
, “
Solid State Sintered 3-D Printing Component by Using Inkjet (Binder) Method
,”
J. Jpn Soc. Powder Powder Metall.
,
63
(
7
), pp.
421
426
. 10.2497/jjspm.63.421
86.
Godlinski
,
D.
,
Pohl
,
H.
, and
Morvan
,
S.
,
2004
, “
Rapid Manufacturing of Dense Stainless Steel Parts by 3D Printing
,”
European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings
,
Vienna, Austria
,
Oct. 17–21
, pp.
131
136
.
87.
Hong
,
D.
,
Chou
,
D. T.
,
Velikokhatnyi
,
O. I.
,
Roy
,
A.
,
Lee
,
B.
,
Swink
,
I.
,
Issaev
,
I.
,
Kuhn
,
H. A.
, and
Kumta
,
P. N.
,
2016
, “
Binder-Jetting 3D Printing and Alloy Development of New Biodegradable Fe-Mn-Ca/Mg Alloys
,”
Acta Biomater.
,
45
, pp.
375
386
. 10.1016/j.actbio.2016.08.032
88.
Johnston
,
S.
,
Frame
,
D.
,
Anderson
,
R.
, and
Storti
,
D.
,
2004
, “
Strain Analysis of Initial Stage Sintering of 316L SS Three Dimensionally Printed (3DP) Components
,”
15th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
129
140
.
89.
Michaels
,
S.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1992
, “
Metal Parts Generation by Three Dimensional Printing
,”
1992 International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
244
250
.
90.
Miyanaji
,
H.
,
2018
, “
Binder Jetting Additive Manufacturing Process Fundamentals and the Resultant Influences on Part Quality
,”
Ph.D. dissertation
,
Louisville, Kentucky
.
91.
Miyanaji
,
H.
,
Momenzadeh
,
N.
, and
Yang
,
L.
,
2018
, “
Effect of Printing Speed on Quality of Printed Parts in Binder Jetting Process
,”
Addit. Manuf.
,
20
, pp.
1
10
. 10.1016/j.addma.2017.12.008
92.
Shrestha
,
S.
, and
Manogharan
,
G.
,
2017
, “
Optimization of Binder Jetting Using Taguchi Method
,”
JOM
,
69
(
3
), pp.
491
497
. 10.1007/s11837-016-2231-4
93.
Tang
,
Y.
,
Zhou
,
Y.
,
Hoff
,
T.
,
Garon
,
M.
, and
Zhao
,
Y. F.
,
2016
, “
Elastic Modulus of 316 Stainless Steel Lattice Structure Fabricated via Binder Jetting Process
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
648
656
. 10.1179/1743284715Y.0000000084
94.
Techapiesancharoenkij
,
R.
,
2004
, “
Bimetallic Bars With Local Control of Composition by Three-Dimensional Printing
,” Master thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
95.
Verlee
,
B.
,
Dormal
,
T.
, and
Lecomte-Beckers
,
J.
,
2013
, “
Density and Porosity Control of Sintered 316L Stainless Steel Parts Produced by Additive Manufacturing
,”
Powder Metall.
,
55
(
4
), pp.
260
267
. 10.1179/0032589912Z.00000000082
96.
Wang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process
,”
Proc. Manuf.
,
10
, pp.
779
790
. 10.1016/j.promfg.2017.07.077
97.
Zhang
,
B.
,
Zhan
,
Z.
,
Cao
,
Y.
,
Gulan
,
H.
,
Linner
,
P.
,
Sun
,
J.
,
Zwick
,
T.
, and
Zirath
,
H.
,
2016
, “
Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications
,”
IEEE Trans. Terahertz Sci. Technol.
,
6
(
4
), pp.
592
600
. 10.1109/TTHZ.2016.2562508
98.
Zhou
,
Y.
,
Tang
,
Y.
,
Hoff
,
T.
,
Garon
,
M.
, and
Zhao
,
F. Y.
,
2015
, “
The Verification of the Mechanical Properties of Binder Jetting Manufactured Parts by Instrumented Indentation Testing
,”
Proc. Manuf.
,
1
, pp.
327
342
. 10.1016/j.promfg.2015.09.038
99.
Ziaee
,
M.
,
Tridas
,
E. M.
, and
Crane
,
N. B.
,
2016
, “
Binder-Jet Printing of Fine Stainless Steel Powder With Varied Final Density
,”
JOM
,
69
(
3
), pp.
592
596
. 10.1007/s11837-016-2177-6
100.
Rishmawi
,
I.
,
Salarian
,
M.
, and
Vlasea
,
M.
,
2018
, “
Binder Jetting Additive Manufacturing of Water-Atomized Iron
,”
29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
160
170
.
101.
Rishmawi
,
I.
,
Salarian
,
M.
, and
Vlasea
,
M.
,
2018
, “
Tailoring Green and Sintered Density of Pure Iron Parts Using Binder Jetting Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
508
520
. 10.1016/j.addma.2018.10.015
102.
Seluga
,
K. J.
,
2001
, “
Three Dimensional Printing by Vector Printing of Fine Metal Powders
,” Master thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
103.
Yoo
,
H. J.
,
1997
, “
Reactive Binders for Metal Parts Produced by Three Dimensional Printing
,” Master thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
104.
Miyanaji
,
H.
,
Momenzadeh
,
N.
, and
Yang
,
L.
,
2019
, “
Effect of Powder Characteristics on Parts Fabricated via Binder Jetting Process
,”
Rapid Prototyping J.
,
25
(
2
), pp.
332
342
. 10.1108/RPJ-03-2018-0069
105.
Atre
,
S.
,
Porter
,
J.
,
Batchelor
,
T.
,
Bulger
,
K. K. M.
, and
Gangopadhya
,
P.
,
2016
, “
Process Parameter Optimization for Binder Jetting Using 420 Stainless Steel
,”
European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings
,
Shrewsbury, UK
, pp.
1
6
.
106.
ExOne
, “
Metal 3D Printing Materials and Binders of ExOne
”, https://www.exone.com/en-US/3d-printing-materials-and-binders/metal-materials-binders, Accessed November 2019.
107.
Turker
,
M.
,
Godlinski
,
D.
, and
Petzoldt
,
F.
,
2008
, “
Effect of Production Parameters on the Properties of IN 718 Superalloy by Three-Dimensional Printing
,”
Mater. Charact.
,
59
(
12
), pp.
1728
1735
. 10.1016/j.matchar.2008.03.017
108.
Mostafaei
,
A.
,
Stevens
,
E. L.
,
Hughes
,
E. T.
,
Biery
,
S. D.
,
Hilla
,
C.
, and
Chmielus
,
M.
,
2016
, “
Powder Bed Binder Jet Printed Alloy 625: Densification, Microstructure and Mechanical Properties
,”
Mater. Des.
,
108
, pp.
126
135
. 10.1016/j.matdes.2016.06.067
109.
Mostafaei
,
A.
,
Neelapu
,
S. H. V. R.
,
Kisailus
,
C.
,
Nath
,
L. M.
,
Jacobs
,
T. D. B.
, and
Chmielus
,
M.
,
2018
, “
Characterizing Surface Finish and Fatigue Behavior in Binder-Jet 3D-Printed Nickel-Based Superalloy 625
,”
Addit. Manuf.
,
24
, pp.
200
209
. 10.1016/j.addma.2018.09.012
110.
Mostafaei
,
A.
,
Stevens
,
E. L.
,
Ference
,
J. J.
,
Schmidt
,
D. E.
, and
Chmielus
,
M.
,
2018
, “
Binder Jetting of a Complex-Shaped Metal Partial Denture Framework
,”
Addit. Manuf.
,
21
, pp.
63
68
. 10.1016/j.addma.2018.02.014
111.
Caputo
,
M.
, and
Solomon
,
C.
,
2017
, “
A Facile Method for Producing Porous Parts With Complex Geometries From Ferromagnetic Ni-Mn-Ga Shape Memory Alloys
,”
Mater. Lett.
,
200
, pp.
87
89
. 10.1016/j.matlet.2017.04.112
112.
Mostafaei
,
A.
,
Kimes
,
K. A.
,
Stevens
,
E. L.
,
Toman
,
J.
,
Krimer
,
Y. L.
,
Ullakko
,
K.
, and
Chmielus
,
M.
,
2017
, “
Microstructural Evolution and Magnetic Properties of Binder Jet Additive Manufactured Ni-Mn-Ga Magnetic Shape Memory Alloy Foam
,”
Acta Mater.
,
131
, pp.
482
490
. 10.1016/j.actamat.2017.04.010
113.
Türker
,
M.
,
Godlinski
,
D.
,
Pohl
,
H.
, and
Petzoldt
,
F.
,
2005
, “
Rapid Prototyping of Inconel Alloys by Direct Metal Laser Sintering and Three Dimensional Printing
,”
European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings
,
Prague, Czech Republic
, pp.
2
5
.
114.
Kakisawa
,
H.
,
Minagawa
,
K.
,
Ida
,
K.
,
Maekawa
,
K.
, and
Halada
,
K.
,
2005
, “
Dense P/M Component Produced by Solid Freeform Fabrication (SFF)
,”
Mater. Trans.
,
46
(
12
), pp.
2574
2581
. 10.2320/matertrans.46.2574
115.
Elliott
,
A. M.
,
Nandwana
,
P.
,
Siddel
,
D. H.
, and
Compton
,
B.
,
2016
,
A Method for Measuring Powder bed Density in Binder jet Additive Manufacturing Process and the Powder Feedstock Characteristics Influencing the Powder bed Density
,
Oak Ridge National Lab.(ORNL)
,
Oak Ridge, TN
.
116.
Mostafaei
,
A.
,
Rodriguez De Vecchis
,
P.
,
Stevens
,
E. L.
, and
Chmielus
,
M.
,
2018
, “
Sintering Regimes and Resulting Microstructure and Properties of Binder jet 3D Printed Ni-Mn-Ga Magnetic Shape Memory Alloys
,”
Acta Mater.
,
154
, pp.
355
364
. 10.1016/j.actamat.2018.05.047
117.
Basalah
,
A.
,
Shanjani
,
Y.
,
Esmaeili
,
S.
, and
Toyserkani
,
E.
,
2012
, “
Characterizations of Additive Manufactured Porous Titanium Implants
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
100
(
7
), pp.
1970
1979
. 10.1002/jbm.b.32764
118.
Stevens
,
E.
,
Schloder
,
S.
,
Bono
,
E.
,
Schmidt
,
D.
, and
Chmielus
,
M.
,
2018
, “
Density Variation in Binder Jetting 3D-Printed and Sintered Ti-6Al-4V
,”
Addit. Manuf.
,
22
, pp.
746
752
. 10.1016/j.addma.2018.06.017
119.
Sheydaeian
,
E.
, and
Toyserkani
,
E.
,
2017
, “
A System for Selectively Encapsulating Porogens Inside the Layers During Additive Manufacturing: From Conceptual Design to the First Prototype
,”
J. Manuf. Processes
,
26
, pp.
330
338
. 10.1016/j.jmapro.2017.03.001
120.
Sheydaeian
,
E.
,
Sarikhani
,
K.
,
Chen
,
P.
, and
Toyserkani
,
E.
,
2017
, “
Material Process Development for the Fabrication of Heterogeneous Titanium Structures With Selective Pore Morphology by a Hybrid Additive Manufacturing Process
,”
Mater. Des.
,
135
, pp.
142
150
. 10.1016/j.matdes.2017.09.025
121.
Sheydaeian
,
E.
, and
Toyserkani
,
E.
,
2018
, “
Additive Manufacturing Functionally Graded Titanium Structures With Selective Closed Cell Layout and Controlled Morphology
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3459
3469
. 10.1007/s00170-018-1815-2
122.
Wheat
,
E.
,
2018
, “
Process Mapping and Optimization of Titanium Parts Made by Binder Jetting Additive Manufacturing
,”
Ph.D. dissertation
,
University of Waterloo
,
Waterloo, ON
.
123.
Lu
,
K.
, and
Reynolds
,
W. T.
,
2008
, “
3DP Process for Fine Mesh Structure Printing
,”
Powder Technol.
,
187
(
1
), pp.
11
18
. 10.1016/j.powtec.2007.12.017
124.
Bai
,
Y.
, and
Williams
,
C. B.
,
2018
, “
The Effect of Inkjetted Nanoparticles on Metal Part Properties in Binder Jetting Additive Manufacturing
,”
Nanotechnology
,
29
(
39
), p.
395706
. 10.1088/1361-6528/aad0bb
125.
Meeder
,
M. P.
,
2016
, “
Modeling the Thermal and Electrical Properties of Different Density Sintered Binder Jetted Copper for Verification and Revision of the Wiedemann-Franz law
,” Master thesis,
Virginia Tech
.
126.
Bai
,
Y.
,
Wall
,
C.
,
Pham
,
H.
,
Esker
,
A.
, and
Williams
,
C. B.
,
2018
, “
Characterizing Binder–Powder Interaction in Binder Jetting Additive Manufacturing Via Sessile Drop Goniometry
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011005
. 10.1115/1.4041624
127.
Bai
,
Y.
, and
Williams
,
C. B.
,
2018
, “
Binder Jetting Additive Manufacturing With a Particle-Free Metal Ink as a Binder Precursor
,”
Mater. Des.
,
147
, pp.
146
156
. 10.1016/j.matdes.2018.03.027
128.
Bai
,
J. G.
,
Creehan
,
K. D.
, and
Kuhn
,
H. A
,
2007
, “
Inkjet Printable Nanosilver Suspensions for Enhanced Sintering Quality in Rapid Manufacturing
,”
Nanotechnology
,
18
(
18
), p.
185701
. 10.1088/0957-4484/18/18/185701
129.
Snelling
,
D.
,
Li
,
Q.
,
Meisel
,
N.
,
Williams
,
C. B.
,
Batra
,
R. C.
, and
Druschitz
,
A. P.
,
2015
, “
Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds
,”
Adv. Eng. Mater.
,
17
(
7
), pp.
923
932
. 10.1002/adem.201400524
130.
Enrique
,
P. D.
,
Mahmoodkhani
,
Y.
,
Marzbanrad
,
E.
,
Toyserkani
,
E.
, and
Zhou
,
N. Y.
,
2018
, “
In Situ Formation of Metal Matrix Composites Using Binder Jet Additive Manufacturing (3D Printing)
,”
Mater. Lett.
,
232
, pp.
179
182
. 10.1016/j.matlet.2018.08.117
131.
Rambo
,
C. R.
,
Travitzky
,
N.
,
Zimmermann
,
K.
, and
Greil
,
P.
,
2005
, “
Synthesis of TiC/Ti–Cu Composites by Pressureless Reactive Infiltration of TiCu Alloy Into Carbon Preforms Fabricated by 3D-Printing
,”
Mater. Lett.
,
59
(
8–9
), pp.
1028
1031
. 10.1016/j.matlet.2004.11.051
132.
Sheydaeian
,
E.
, and
Toyserkani
,
E.
,
2018
, “
A New Approach for Fabrication of Titanium-Titanium Boride Periodic Composite via Additive Manufacturing and Pressure-Less Sintering
,”
Compos. Part B: Eng.
,
138
, pp.
140
148
. 10.1016/j.compositesb.2017.11.035
133.
Snelling
,
D. A.
,
Williams
,
C. B.
,
Suchicital
,
C. T. A.
, and
Druschitz
,
A. P.
,
2017
, “
Binder Jetting Advanced Ceramics for Metal-Ceramic Composite Structures
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
531
545
. 10.1007/s00170-017-0139-y
134.
Stoyanov
,
P.
,
Andre
,
K.
,
Prichard
,
P.
,
Yao
,
M.
, and
Gey
,
C.
,
2016
, “
Microstructural and Mechanical Characterization of Mo-Containing Stellite Alloys Produced by Three Dimensional Printing
,”
Proc. CIRP
,
45
, pp.
167
170
. 10.1016/j.procir.2016.02.358
135.
Dilip
,
J. J. S.
,
Miyanaji
,
H.
,
Lassell
,
A.
,
Starr
,
T. L.
, and
Stucker
,
B.
,
2017
, “
A Novel Method to Fabricate TiAl Intermetallic Alloy 3D Parts Using Additive Manufacturing
,”
Def. Technol.
,
13
(
2
), pp.
72
76
. 10.1016/j.dt.2016.08.001
136.
Yin
,
X.
,
Travitzky
,
N.
,
Melcher
,
R.
, and
Greil
,
P.
,
2006
, “
Three-Dimensional Printing of TiAl3/Al2O3 Composites
,”
Zeitschrift für Metallkunde
,
97
(
5
), pp.
492
498
. 10.3139/146.101263
137.
Levy
,
A.
,
Miriyev
,
A.
,
Elliott
,
A.
,
Babu
,
S. S.
, and
Frage
,
N.
,
2017
, “
Additive Manufacturing of Complex-Shaped Graded TiC/Steel Composites
,”
Mater. Des.
,
118
, pp.
198
203
. 10.1016/j.matdes.2017.01.024
138.
Uduwage
,
D. S. D.
,
2015
, “
Binder Jet Additive Manufacturing of Stainless Steel-Hydroxyapatite Bio-Composite
,” Master thesis,
Minnesota State University
.
139.
Cramer
,
C. L.
,
Nandwana
,
P.
,
Lowden
,
R. A.
, and
Elliott
,
A. M.
,
2019
, “
Infiltration Studies of Additive Manufacture of WC with Co Using Binder Jetting and Pressureless Melt Method
,”
Additive Manufacturing
,
28
, pp.
333
343
. 10.1016/j.addma.2019.04.009
140.
Rodriguez
,
P.
,
Mostafaei
,
A.
, and
Chmielus
,
M.
,
2018
, “
Binder Jet Additive Manufacturing of Dental Material From Cobalt-Chrome Alloy
,”
Highlighting Undergraduate Research at the University of Pittsburgh Swanson School of Engineering
, p.
63
.
141.
Ibrahim
,
I.
,
Mohamed
,
F.
, and
Lavernia
,
E.
,
1991
, “
Particulate Reinforced Metal Matrix Composites—a Review
,”
J. Mater. Sci.
,
26
(
5
), pp.
1137
1156
. 10.1007/BF00544448
142.
Kaczmar
,
J.
,
Pietrzak
,
K.
, and
Włosiński
,
W.
,
2000
, “
The Production and Application of Metal Matrix Composite Materials
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
58
67
. 10.1016/S0924-0136(00)00639-7
143.
ASTM International
,
2014
, “
F3049-14: Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes
,”
ASTM International, West Conshohocken, PA
.
144.
ASTM International
,
2020
, “
B213-20: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel
,”
ASTM International, West Conshohocken, PA
.
145.
ASTM International
,
2016
, “
B964-16: Test Methods for Flow Rate of Metal Powders Using the Carney Funnel
,”
ASTM International, West Conshohocken, PA
.
146.
Grey
,
R.
, and
Beddow
,
J.
,
1969
, “
On the Hausner Ratio and its Relationship to Some Properties of Metal Powders
,”
Powder Technol.
,
2
(
6
), pp.
323
326
. 10.1016/0032-5910(69)80024-0
147.
Gu
,
D.
,
Xia
,
M.
, and
Dai
,
D.
,
2019
, “
On the Role of Powder Flow Behavior in Fluid Thermodynamics and Laser Processability of Ni-Based Composites by Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
137
, pp.
67
78
. 10.1016/j.ijmachtools.2018.10.006
148.
ExOne
, “
ExOne Innovent+®
”, https://www.exone.com/en-US/3D-printing-systems/metal-3d-printers/Innovent, Accessed January 2020.
149.
Haeri
,
S.
,
Wang
,
Y.
,
Ghita
,
O.
, and
Sun
,
J.
,
2017
, “
Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing
,”
Powder Technol.
,
306
, pp.
45
54
. 10.1016/j.powtec.2016.11.002
150.
Schade
,
C. T.
,
Murphy
,
T. F.
, and
Walton
,
C.
,
2014
, “
Development of Atomized Powders for Additive Manufacturing
,”
Powder Metallurgy Word Congress
,
Orlando, FL
,
May 18–22
151.
Cima
,
M.
,
Lauder
,
A.
,
Khanuja
,
S.
, and
Sachs
,
E.
,
1992
, “
Microstructural Elements of Components Derived From 3D Printing
,”
1992 International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
220
227
.
152.
Meier
,
C.
,
Weissbach
,
R.
,
Weinberg
,
J.
,
Wall
,
W. A.
, and
Hart
,
A. J.
,
2019
, “
Critical Influences of Particle Size and Adhesion on the Powder Layer Uniformity in Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
266
, pp.
484
501
. 10.1016/j.jmatprotec.2018.10.037
153.
Miyanaji
,
H.
,
Zhang
,
S.
, and
Yang
,
L.
,
2018
, “
A New Physics-Based Model for Equilibrium Saturation Determination in Binder Jetting Additive Manufacturing Process
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
1
11
. 10.1016/j.ijmachtools.2017.09.001
154.
Pollock
,
T. M.
, and
Tin
,
S. J.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
,”
J. Propul. Power
,
22
(
2
), pp.
361
374
. 10.2514/1.18239
155.
Budding
,
A.
, and
Vaneker
,
T. H. J.
,
2013
, “
New Strategies for Powder Compaction in Powder-Based Rapid Prototyping Techniques
,”
Proc. CIRP
,
6
, pp.
527
532
. 10.1016/j.procir.2013.03.100
156.
Shanjani
,
Y.
, and
Toyserkani
,
E.
,
2008
, “
Material Spreading and Compaction in Powder-Based Solid Freeform Fabrication Methods: Mathematical Modeling
,”
19th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
399
410
.
157.
Chen
,
H.
,
Wei
,
Q.
,
Wen
,
S.
,
Li
,
Z.
, and
Shi
,
Y.
,
2017
, “
Flow Behavior of Powder Particles in Layering Process of Selective Laser Melting: Numerical Modeling and Experimental Verification Based on Discrete Element Method
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
146
159
. 10.1016/j.ijmachtools.2017.08.004
158.
Lee
,
S.-J.
,
Sachs
,
E.
, and
Cima
,
M.
,
1995
, “
Layer Position Accuracy in Powder-Based Rapid Prototyping
,”
Rapid Prototyping J.
,
1
(
4
), pp.
24
37
. 10.1108/13552549510104447
159.
Gale
,
W. F.
, and
Totemeier
,
T. C.
,
2003
,
Smithells Metals Reference Book
,
Elsevier
,
New York
.
160.
Digital Metal
, “
DIGITAL METAL®Materials for 3D Printing
”, https://digitalmetal.tech/materials/, Accessed May 2020.
161.
MatWeb
, “
Material Property Data
”, http://www.matweb.com/, Accessed January 2020.
162.
Gruppo Lucefin
,
2012
, “
Precipitation Hardening Stainless Steel Technical Card
”, http://www.lucefin.com/wp-content/files_mf/1.4542pha63062.pdf.
163.
ASM Aerospace Specification Metals Inc.
, “
ASM AISI Type 304 Stainless Steel
”, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a, Accessed January 2020.
164.
ASTM International
,
2019
, “
A240/A240M-19: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Stripe for Pressure Vessels and for General Application
,”
ASTM International, West Conshohocken, PA
.
165.
AZO Materials
, “
Nickel-Based Super Alloy Inconel 625 - Properties and Applications by United Performance Alloys
,” https://www.azom.com/article.aspx?ArticleID=4461#:~:text=Properties%20of%20Nickel%20Alloy%20Inconel,cryogenic%20to%202000%C2%B0F., Accessed January 2020.
166.
Sandmeyer Steel Company
, “
Alloy 17-4PH
”, https://www.sandmeyersteel.com/17-4PH.html, Accessed January 2020.
167.
Haeri
,
S.
,
2017
, “
Optimisation of Blade Type Spreaders for Powder Bed Preparation in Additive Manufacturing Using DEM Simulations
,”
Powder Technol.
,
321
, pp.
94
104
. 10.1016/j.powtec.2017.08.011
168.
Lee
,
Y. S.
,
Nandwana
,
P.
, and
Zhang
,
W.
,
2018
, “
Dynamic Simulation of Powder Packing Structure for Powder Bed Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
1507
1520
. 10.1007/s00170-018-1697-3
169.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081019
. 10.1115/1.4036640
170.
Shishkovsky
,
Igor
,
2016
, “Additive Manufacturing of Casting Tools Using Powder-Binder- Jetting Technology,”
New Trends in 3D Printing
,
D.
Günther
, and
F.
Mögele
, eds.,
IntechOpen
,
London, UK
, pp.
53
86
.
171.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
. 10.1146/annurev.fluid.38.050304.092144
172.
Parab
,
N. D.
,
Barnes
,
J. E.
,
Zhao
,
C.
,
Cunningham
,
R. W.
,
Fezzaa
,
K.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2019
, “
Real Time Observation of Binder Jetting Printing Process Using High-Speed X-ray Imaging
,”
Sci. Rep.
,
9
(
1
), p.
2499
. 10.1038/s41598-019-38862-7
You do not currently have access to this content.