The mask image projection-based stereolithography (MIP-SL) is a low-cost and high-resolution additive manufacturing (AM) process. However, the slow speed of part separation and resin refilling is the primary bottleneck that limits the fabrication speed of the MIP-SL process. In addition, the stair-stepping effect due to the layer-based fabrication process limits the surface quality of built parts. To address the critical issues in the MIP-SL process related to resin refilling and layer-based fabrication, we present a mask video projection-based stereolithography (MVP-SL) process with continuous resin flow and light exposure. The newly developed AM process enables the continuous fabrication of three-dimensional (3D) objects with ultra-high fabrication speed. In the paper, the system design to achieve mask video projection and the process settings to achieve ultrafast fabrication speed are presented. The relationship between process parameters and the surface quality of the built parts is discussed. Test results illustrate that the MVP-SL process with a continuous resin flow can build three-dimensional objects within minutes, and the surface quality of the fabricated objects is significantly improved.

References

1.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
(
C
), pp.
65
89
.
2.
Lu
,
L.
,
Tang
,
X.
,
Hu
,
S.
, and
Pan
,
Y.
,
2018
, “
Acoustic Field-Assisted Particle Patterning for Smart Polymer Composite Fabrication in Stereolithography
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
151
159
.
3.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), pp.
1706539
.
4.
Leung
,
Y. S.
,
Kwok
,
T. H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2018
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
5.
Li
,
X.
,
Xie
,
B.
,
Jin
,
J.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2018
, “
3D Printing Temporary Crown and Bridge by Temperature Controlled Mask Image Projection Stereolithography
,”
Proc. Manuf.
,
26
, pp.
1023
1033
.
6.
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Smooth Surface Fabrication Based on Controlled Meniscus and Cure Depth in Microstereolithography
,”
ASME J. Micro Nano-Manuf.
,
3
(
3
), p.
031001
.
7.
Pan
,
Y.
,
Zhao
,
X.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Process
,
14
(
4
), pp.
460
470
.
8.
Li
,
X.
,
Baldacchin
,
T.
,
Song
,
X.
, and
Chen
,
Y.
,
2016
, “
Multi-Scale Additive Manufacturing: An Investigation on Building Objects With Macro-, Micro- and Nano-Scales Features
,”
11th International Conference on Micro Manufacturing
,
Irvine, CA
,
Mar. 29
, p.
96
.
9.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
10.
Yazdi
,
A. A.
,
Popma
,
A.
,
Wong
,
W.
,
Nguyen
,
T.
,
Pan
,
Y.
, and
Xu
,
J.
,
2016
, “
3D Printing: An Emerging Tool for Novel Microfluidics and Lab-on-a-Chip Applications
,”
Microfluid. Nanofluid.
,
20
(
3
), p.
50
.
11.
Jo
,
K. H.
,
Lee
,
S. H.
, and
Choi
,
J. W.
,
2018
, “
Liquid Bridge Stereolithography: A Proof of Concept
,”
Int. J. Precis. Eng. Manuf.
,
19
(
8
), pp.
1253
1259
.
12.
Park
,
I. B.
,
Ha
,
Y. M.
, and
Lee
,
S. H.
,
2011
, “
Dithering Method for Improving the Surface Quality of a Microstructure in Projection Microsterelithography
,”
Int. J. Adv. Manuf. Technol.
,
52
(
5–8
), pp.
545
553
.
13.
Pan
,
Y.
, and
Chen
,
Y.
,
2016
, “
Meniscus Process Optimization for Smooth Surface Fabrication in Stereolithography
,”
Addit. Manuf.
,
12
(
B
), pp.
321
333
.
14.
Chen
,
Y.
,
Zhou
,
C.
, and
Lao
,
J.
,
2011
, “
A Layerless Additive Manufacturing Process Based on CNC Accumulation
,”
Rapid Prototyping J.
,
17
(
3
), pp.
218
227
.
15.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.
16.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
, and
Samulski
,
E. T.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
2397
.
17.
O’Bryan
,
C. S.
,
Bhattacharjee
,
T.
,
Hart
,
S.
,
Kabb
,
C. P.
,
Schulze
,
K. D.
,
Chilakala
,
I.
,
Sumerlin
,
B. S.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2017
, “
Self-Assembled Micro-Organogels for 3D Printing Silicone Structures
,”
Sci. Adv.
,
3
(
5
), p.
e1602800
.
18.
Bhattacharjee
,
T.
,
Zehnder
,
S. M.
,
Rowe
,
K. G.
,
Jain
,
S.
,
Nixon
,
R. M.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2015
, “
Writing in the Granular gel Medium
,”
Sci. Adv.
,
1
(
8
), p.
e1500655
.
19.
Günther
,
D.
,
Heymel
,
B.
,
Franz Günther
,
J.
, and
Ederer
,
I.
,
2014
, “
Continuous 3D-Printing for Additive Manufacturing
,”
Rapid Prototyping J.
,
20
(
4
), pp.
320
327
.
20.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-Scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Proc.
,
28
, pp.
531
540
.
21.
He
,
H.
,
Yang
,
Y.
, and
Pan
,
Y.
,
2019
, “
Machine Learning for Continuous Liquid Interface Production: Printing Speed Modelling
,”
J. Manuf. Systems
,
50
, pp.
236
246
.
22.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
.
23.
Yang
,
Y.
,
Li
,
X.
,
Zheng
,
X.
,
Chen
,
Z.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation
,”
Adv. Mater.
,
30
(
9
), p.
1704912
.
24.
Li
,
X.
,
Yang
,
Y.
, and
Chen
,
Y.
,
2017
, “
Bio-Inspired Micro-Scale Texture Fabrication Based on Immersed Surface Accumulation Process
,”
Proceedings of the World Congress on Micro and Nano Manufacturing Conference (WCMNM)
,
Kaohsiung, Taiwan
,
Mar. 27–30
, pp.
33
36
.
25.
He
,
H.
,
Pan
,
Y.
,
Feinerman
,
A.
, and
Xu
,
J.
,
2018
, “
Air-Diffusion-Channel Constrained Surface Based Stereolithography for Three-Dimensional Printing of Objects With Wide Solid Cross Sections
,”
J. Manuf. Sci. Eng.
,
140
(
6
), p.
061011
.
26.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.
27.
Jin
,
J.
,
Yang
,
J.
,
Mao
,
H.
, and
Chen
,
Y.
,
2018
, “
A Vibration-Assisted Method to Reduce Separation Force for Stereolithography
,”
J. Manuf. Proc.
,
34
(
PB
), pp.
793
801
.
28.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
29.
Song
,
X.
,
Chen
,
Y.
,
Lee
,
T. W.
,
Wu
,
S.
, and
Cheng
,
L.
,
2015
, “
Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated With Tape-Casting
,”
J. Manuf. Proc.
,
20
, pp.
456
464
.
30.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z. G.
, and
Khoshnevis
,
B.
,
2011
, “
Development of multi-material mask-image-projection-based stereolithography for the fabrication of digital materials
,”
Annual solid freeform fabrication symposium
,
Austin, TX
,
Aug. 12–14
, pp.
65
80
.
31.
Dendukuri
,
D.
,
Pregibon
,
D. C.
,
Collins
,
J.
,
Hatton
,
T. A.
, and
Doyle
,
P. S.
,
2006
, “
Continuous-Flow Lithography for High-Throughput Microparticle Synthesis
,”
Nat. Mater.
,
5
(
5
), p.
365
.
32.
Odian
,
G.
,
2004
,
Principles of Polymerization
,
John Wiley & Sons
,
New York
.
33.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Southfield, MI
.
34.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
35.
Moser
,
R. D.
,
Moin
,
P.
, and
Leonard
,
A.
,
1983
, “
A Spectral Numerical Method for the Navier-Stokes Equations with Applications to Taylor-Couette Flow
,”
J. Comput. Phys.
,
52
(
3
), pp.
524
544
.
36.
Larson
,
R. G.
,
Shaqfeh
,
E. S.
, and
Muller
,
S. J.
,
1990
, “
A Purely Elastic Instability in Taylor–Couette Flow
,”
J. Fluid Mech.
,
218
, pp.
573
600
.
37.
Wereley
,
S. T.
, and
Lueptow
,
R. M.
,
1999
, “
Velocity Field for Taylor–Couette Flow with an Axial Flow
,”
Phys. Fluids
,
11
(
12
), pp.
3637
3649
.
38.
Santilli
,
R. M.
,
2012
,
Foundations of Theoretical Mechanics II: Birkhoffian Generalizations of Hamiltonian Mechanics
,
Springer Science & Business Media
,
New York
.
39.
Amalia
,
E.
,
Moelyadi
,
M. A.
, and
Ihsan
,
M.
,
2018
, “
Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder
,”
J. Phys. Conf. Ser.
,
1005
(
1
), pp.
012012
.
You do not currently have access to this content.