Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (µ-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the µ-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.

References

1.
Vilar
,
R.
,
1999
, “
Laser Cladding
,”
J. Laser Appl.
11
(
2
), pp.
64
79
.
2.
Baufeld
,
B.
,
Brandl
,
E.
, and
Van Der Biest
,
O.
,
2011
, “
Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,”
J. Mater. Process. Technol.
211
(
6
), pp.
1146
1158
.
3.
Sawant
M. S.
, and
Jain
,
N. K.
,
2017
, “
Characteristics of Single-Track and Multi-Track Depositions of Stellite by Micro-Plasma Transferred Arc Powder Deposition Process
,”
J. Mater. Eng. Perform.
,
26
(
8
), pp.
4029
4039
.
4.
Jhavar
,
S.
,
Jain
,
N. K.
, and
Paul
,
C. P.
,
2014
, “
Development of Micro-Plasma Transferred arc (µ-PTA) Wire Deposition Process for Additive Layer Manufacturing Applications
,”
J. Mater. Process. Technol.
214
(
5
), pp.
1102
1110
.
5.
Sawant
,
M. S.
, and
Jain
,
N. K.
,
2017
, “
Investigations on Wear Characteristics of Stellite Coating by Micro-Plasma Transferred arc Powder Deposition Process
,”
Wear
,
378–379
, pp.
155
164
.
6.
Sawant
,
M. S.
, and
Jain
,
N. K.
,
2018
, “
Investigations on Additive Manufacturing of Ti–6Al–4V by Micro-Plasma Transferred arc Powder Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081014
.
7.
Gharbi
,
M.
,
Peyre
,
P.
,
Gorny
,
C.
,
Carin
,
M.
,
Morville
,
S.
,
Le Masson
,
P.
,
Carron
,
D.
, and
Fabbro
,
R.
,
2013
, “
Influence of Various Process Conditions on Surface Finishes Induced by the Direct Metal Deposition Laser Technique on a Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
213
(
5
), pp.
791
800
.
8.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2012
, “
Three-Dimensional Finite Element Analysis of Thermal Stress in Single-Pass Multi-Layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
212
(
1
), pp.
276
285
.
9.
Safronov
,
V. A.
,
Khmyrov
,
R. S.
,
Kotoban
,
D. V.
, and
Gusarov
,
A. V.
,
2017
, “
Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031017
.
10.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Griffith
,
M.
,
2006
, “
Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
101
109
.
11.
Chew
,
Y.
,
Pang
,
J. H. L.
,
Bi
,
G.
, and
Song
,
B.
,
2015
, “
Thermo-Mechanical Model for Simulating Laser Cladding Induced Residual Stresses With Single and Multiple Clad Beads
,”
J. Mater. Process. Technol.
,
224
, pp.
89
101
.
12.
Jayanath
,
S.
, and
Achuthan
,
A.
,
2018
, “
A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041009
.
13.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
,
Golabi
,
S.
, and
Mynors
,
D. J.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
89
, pp.
255
263
.
14.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng. Res. Dev.
4
(
1
), pp.
35
45
.
15.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031004
.
16.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
.
17.
Ye
,
Q.
, and
Chen
,
S.
,
2017
, “
Numerical Modeling of Metal-Based Additive Manufacturing Using Level Set Methods
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071019
.
18.
Bass
,
L.
,
Milner
,
J.
,
Gnaupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
.
19.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Belting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
135
(
6
), p.
061010
.
20.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
21.
Hemmesi
,
K.
,
Farajian
,
M.
, and
Boin
,
M.
,
2017
, “
Numerical Studies of Welding Residual Stresses in Tubular Joints and Experimental Validations by Means of X-Ray and Neutron Diffraction Analysis
,”
Mater. Des.
,
126
,
339
350
.
22.
Gan
,
Z.
,
Ng
,
H. W.
, and
Devasenapathi
,
A.
,
2004
, “
Deposition-Induced Residual Stresses in Plasma-Sprayed Coatings
,”
Surf. Coat. Technol.
187
(
2-3
), pp.
307
319
.
23.
Singh
,
S.
,
Yadaiah
,
N.
,
Bag
,
S.
, and
Pal
,
S.
,
2014
, “
Numerical Simulation of Welding-Induced Residual Stress in Fusion Welding Process Using Adaptive Volumetric Heat Source
,”
Proc. Inst. Mech. Eng. Pt. C J. Mech. Eng. Sci.
228
(
16
), pp.
2960
2972
.
24.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Ganguly
,
S.
,
Almeida
,
P. M. S.
,
Wang
,
F.
, and
Williams
,
S.
,
2011
, “
Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts
,”
Comput. Mater. Sci.
50
(
12
), pp.
3315
3322
.
25.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R. A.
,
2006
, “
Three-Dimensional Finite Element Modeling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng. Pt. C J. Mech. Eng. Sci.
220
(
6
), pp.
875
885
.
26.
Kohandehghan
,
A. R.
,
Serajzadeh
,
S.
, and
Kokabi
,
A. H.
,
2010
, “
A Study on Residual Stresses in Gas Tungsten Arc Welding of AA5251
,”
Mater. Manuf. Process.
25
(
11
), pp.
1242
1250
.
27.
ANSYS Inc.
,
2010
, “
ANSYS 13.0
,” .
28.
Nikam
,
S. H.
, and
Jain
,
N. K.
,
2017
, “
Three-Dimensional Thermal Analysis of Multi-Layer Metallic Deposition by Micro-Plasma Transferred arc Process Using Finite Element Simulation
,”
J. Mater. Process. Technol.
,
249
, pp.
264
273
.
29.
Chen
,
S. C.
,
Jong
,
W. R.
,
Chang
,
Y. J.
,
Chang
,
J. A.
, and
Cin
,
J. C.
,
2006
, “
Rapid Mold Temperature Variation for Assisting the Micro Injection of High Aspect Ratio Micro-Feature Parts Using Induction Heating Technology
,”
J. Micromech. Microeng.
16
(
9
), pp.
1783
1791
.
30.
Gallina
,
D.
,
2011
, “
Finite Element Prediction of Crack Formation Induced by Quenching in a Forged Valve
,”
Eng. Fail. Anal.
18
(
8
), pp.
2250
2259
.
31.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti–6Al–4V at High Temperatures Measured Using the SHPB Technique
,”
Int. J. Impact Eng.
31
(
6
), pp.
735
754
.
32.
Hu
,
Z. M.
,
Brooks
,
J. W.
, and
Dean
,
T. A.
,
1998
, “
The Interfacial Heat Transfer Coefficient in Hot Die Forging of Titanium Alloy
,”
Proc. Inst. Mech. Eng. Pt. C J. Mech. Eng. Sci.
212
(
6
), pp.
485
496
.
33.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
Three-Dimensional Numerical Approach for Geometrical Prediction of Multilayer Laser Solid Freeform Fabrication Process
,”
J. Laser Appl.
19
(
1
), pp.
14
25
.
34.
Lampa
,
C.
,
Kaplan
,
A. F. H.
,
Powell
,
J.
, and
Magnusson
,
C.
,
1997
, “
An Analytical Thermodynamic Model of Laser Welding
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
1293
1299
.
35.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermo-Physical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge
, p.
211
.
36.
Ho
,
C. Y.
, and
Chu
,
T. K.
,
1977
, “
Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels
,” Center for Information and Numerical Data Analysis and Synthesis Report 45, pp.
36
.
37.
Li
,
J. J. Z.
,
Johnson
,
W. L.
, and
Rhim
,
W.
,
2006
, “
Thermal Expansion of Liquid Ti-6AI-4V Measured by Electrostatic Levitation
,”
Appl. Phys. Lett.
89
(
11
), pp.
10
12
.
38.
American Iron and Steel Institute
,
2010
, “
High Temperature Characteristics of Stainless Steel
,” Nickel Development Institute, https://www.nickelinstitute.org/∼/Media/Files/TechnicalLiterature/High_TemperatureCharacteristicsofStainlessSteel_9004_.pdf. Accessed October 9, 2017.
39.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
.
40.
Esquivel
,
A. L.
, and
Evans
,
K. R.
,
1968
, “
X-Ray Diffraction Study of Residual Macro Stresses in Shot-Peened and Fatigued 4130 Steel
,”
Exp. Mech.
,
8
(
11
), pp.
496
503
.
41.
Yadroitsev
,
I.
, and
Yadroitsava
,
I.
,
2015
, “
Evaluation of Residual Stress in Stainless Steel 316L and Ti6Al4V Samples Produced by Selective Laser Melting
,”
Virtual Phys. Prototyp.
10
(
2
), pp.
67
76
.
You do not currently have access to this content.