Cutter runout is universal and inevitable in milling process and has a direct impact on the shape of the in-process geometry. However, most of the works on the cutter-workpiece engagement (CWE) extraction neglect the cutter runout impact, which will result in a loss of precision. In this paper, an accurate method is presented to obtain CWE boundaries in five-axis milling with a general tool integrating the cutter runout impact. First, each flute's rotary surface is analytically derived. Then, by intersecting the section circle corresponding to the current flute with each of the rotary surface formed by previous flutes, a set of candidate feasible contact arcs (CFCAs) are obtained, and the valid feasible contact arc (VFCA) is defined as the common intersection of these CFCAs. Next, by intersecting the VFCA with the workpiece surfaces, the partial arc which locates inside the workpiece volume is extracted as the engagement arc. Finally, the CWE map is plotted by mapping a set of engagement arcs to a 2D space. To validate the proposed method, the CWE maps with/without integrating the cutter runout impact in five-axis milling of an axial compressor blisk are extracted and compared. The results reveal that the shape of CWE boundaries is changed a lot owing to the cutter runout impact. A cutting force comparison experiment has been carried out to show that the proposed method will lead to higher prediction accuracy especially in the finish milling process with low immersion angle.

References

1.
Harik
,
R.
,
Gong
,
H.
, and
Bernard
,
A.
,
2013
, “
5-Axis Flank Milling: A State-of-the-Art Review
,”
Comput. Aided Des.
,
45
(
3
), pp.
796
808
.
2.
Zhu
,
L. M.
,
Zheng
,
G.
,
Ding
,
H.
, and
Xiong
,
Y. L.
,
2010
, “
Global Optimization of Tool Path for Five-Axis Flank Milling With a Conical Cutter
,”
Comput. Aided Des.
,
42
(
10
), pp.
903
910
.
3.
Fussell
,
B.
,
Jerard
,
R.
, and
Hemmett
,
J.
,
2003
, “
Modeling of Cutting Geometry and Forces for 5-Axis Sculptured Surface Machining
,”
Comput. Aided Des.
,
35
(
4
), pp.
333
346
.
4.
Zhu
,
R. X.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2001
, “
Mechanistic Modeling of the Ball End Milling Process for Multi-Axis Machining of Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
369
379
.
5.
Li
,
J.
,
Yao
,
Y.
,
Xia
,
P.
,
Liu
,
C.
, and
Wu
,
C.
,
2008
, “
Extended Octree for Cutting Force Prediction
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
866
873
.
6.
Zhang
,
L. Q.
,
Feng
,
J. C.
,
Wang
,
Y. H.
, and
Chen
,
M.
,
2009
, “
Feedrate Scheduling Strategy for Free-Form Surface Machining Through an Integrated Geometric and Mechanistic Model
,”
Int. J. Adv. Manuf. Technol.
,
40
(
11–12
), pp.
1191
1201
.
7.
Kim
,
G.
,
Cho
,
P.
, and
Chu
,
C.
,
2000
, “
Cutting Force Prediction of Sculptured Surface Ball-End Milling Using Z-Map
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
277
291
.
8.
Zhang
,
L. Q.
,
2011
, “
Process Modeling and Toolpath Optimization for Five-Axis Ball-End Milling Based on Tool Motion Analysis
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
905
916
.
9.
Aras
,
E.
, and
Yip-Hoi
,
D.
,
2008
, “
Geometric Modeling of Cutter/Workpiece Engagements in Three-Axis Milling Using Polyhedral Representations
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
3
), p.
031007
.
10.
Yau
,
H.-T.
, and
Tsou
,
L.-S.
,
2009
, “
Efficient NC Simulation for Multi-Axis Solid Machining With a Universal APT Cutter
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021001
.
11.
Zhu
,
Z.
,
Yan
,
R.
,
Peng
,
F.
,
Duan
,
X.
,
Zhou
,
L.
,
Song
,
K.
, and
Guo
,
C.
,
2016
, “
Parametric Chip Thickness Model Based Cutting Forces Estimation Considering Cutter Runout of Five-Axis General End Milling
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
35
51
.
12.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H.-Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.
13.
Kiswanto
,
G.
,
Hendriko
,
H.
, and
Duc
,
E.
,
2015
, “
A Hybrid Analytical-and Discrete-Based Methodology for Determining Cutter-Workpiece Engagement in Five-Axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
80
(
9–12
), pp.
2083
2096
.
14.
Spence
,
A. D.
,
Abrari
,
F.
, and
Elbestawi
,
M. A.
,
2000
, “
Integrated Solid Modeller Based Solutions for Machining
,”
Comput. Aided Des.
,
32
(
8
), pp.
553
568
.
15.
Freiburg
,
D.
,
Hense
,
R.
,
Kersting
,
P.
, and
Biermann
,
D.
,
2016
, “
Determination of Force Parameters for Milling Simulations by Combining Optimization and Simulation Techniques
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
044502
.
16.
Lazoglu
,
I.
,
Boz
,
Y.
, and
Erdim
,
H.
,
2011
, “
Five-Axis Milling Mechanics for Complex Free Form Surfaces
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
117
120
.
17.
Boz
,
Y.
,
Erdim
,
H.
, and
Lazoglu
,
I.
,
2015
, “
A Comparison of Solid Model and Three-Orthogonal Dexelfield Methods for Cutter-Workpiece Engagement Calculations in Three-and Five-Axis Virtual Milling
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
811
823
.
18.
Larue
,
A.
, and
Altintas
,
Y.
,
2005
, “
Simulation of Flank Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
45
(
4
), pp.
549
559
.
19.
Aras
,
E.
, and
Albedah
,
A.
,
2014
, “
Extracting Cutter/Workpiece Engagements in Five-Axis Milling Using Solid Modeler
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1351
1362
.
20.
Sun
,
Y.
, and
Guo
,
Q.
,
2011
, “
Numerical Simulation and Prediction of Cutting Forces in Five-Axis Milling Processes With Cutter Run-Out
,”
Int. J. Mach. Tools Manuf.
,
51
(
10
), pp.
806
815
.
21.
Ferry
,
W.
, and
Yip-Hoi
,
D.
,
2008
, “
Cutter-Workpiece Engagement Calculations by Parallel Slicing for Five-Axis Flank Milling of Jet Engine Impellers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051011
.
22.
Gong
,
X.
, and
Feng
,
H.-Y.
,
2016
, “
Cutter-Workpiece Engagement Determination for General Milling Using Triangle Mesh Modeling
,”
J. Comput. Des. Eng.
,
3
(
2
), pp.
151
160
.
23.
Li
,
Z. L.
,
Wang
,
X. Z.
, and
Zhu
,
L. M.
,
2016
, “
Arc–Surface Intersection Method to Calculate Cutter–Workpiece Engagements for Generic Cutter in Five-Axis Milling
,”
Comput.-Aided Des.
,
73
, pp.
1
10
.
24.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2016
, “
Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111012
.
25.
Chang
,
Z.
, and
Chen
,
Z. C.
,
2016
, “
An Accurate and Efficient Approach to Three-Dimensional Geometric Modeling of Undeformed Chips for the Geometric and the Physical Simulations of Three-Axis Milling of Complex Parts
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051010
.
26.
Schmitz
,
T. L.
,
Couey
,
J.
,
Marsh
,
E.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2007
, “
Runout Effects in Milling: Surface Finish, Surface Location Error, and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
.
27.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2014
, “
Envelope Surface Modeling and Tool Path Optimization for Five-Axis Flank Milling Considering Cutter Runout
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041021
.
28.
Desai
,
K.
,
Agarwal
,
P. K.
, and
Rao
,
P.
,
2009
, “
Process Geometry Modeling With Cutter Runout for Milling of Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
,
49
(
12
), pp.
1015
1028
.
29.
Li
,
Z.-L.
,
Niu
,
J.-B.
,
Wang
,
X.-Z.
, and
Zhu
,
L.-M.
,
2015
, “
Mechanistic Modeling of Five-Axis Machining With a General End Mill Considering Cutter Runout
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
67
79
.
30.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters—Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
31.
Wan
,
M.
,
Zhang
,
W.-H.
,
Dang
,
J.-W.
, and
Yang
,
Y.
,
2009
, “
New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1144
1151
.
32.
Lee
,
S. W.
, and
Nestler
,
A.
,
2011
, “
Complete Swept Volume Generation—Part I: Swept Volume of a Piecewise C-1-Continuous Cutter at Five-Axis Milling Via Gauss Map
,”
Comput.-Aided Des.
,
43
(
4
), pp.
427
441
.
33.
Martellotti
,
M.
,
1941
, “
An Analysis of the Milling Process
,”
Trans. ASME
,
63
(8), pp.
677
695
.
34.
Wan
,
M.
,
Zhang
,
W.-H.
,
Dang
,
J.-W.
, and
Yang
,
Y.
,
2010
, “
A Unified Stability Prediction Method for Milling Process With Multiple Delays
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
29
41
.
You do not currently have access to this content.