In this study, laser metal deposition (LMD) additive manufacturing was used to deposit the pure Inconel 625 alloy and the TiC/Inconel 625 composites with different starting sizes of TiC particles, respectively. The influence of the additive TiC particle and its original size on the constitutional phases, microstructural features, and mechanical properties of the LMD-processed parts was studied. The incorporation of TiC particles significantly changed the prominent texture of Ni–Cr matrix phase from (200) to (100). The bottom and side parts of each deposited track showed mostly the columnar dendrites, while the cellular dendrites were prevailing in the microstructure of the central zone of the deposited track. As the nano-TiC particles were added, more columnar dendrites were observed in the solidified molten pool. The incorporation of nano-TiC particles induced the formation of the significantly refined columnar dendrites with the secondary dendrite arms developed considerably well. With the micro-TiC particles added, the columnar dendrites were relatively coarsened and highly degenerated, with the secondary dendrite growth being entirely suppressed. The cellular dendrites were obviously refined by the additive TiC particles. When the nano-TiC particles were added to reinforce the Inconel 625, the significantly improved microhardness, tensile property, and wear property were obtained without sacrificing the ductility of the composites.

References

1.
Rai
,
S. K.
,
Kumar
,
A.
,
Shankar
,
V.
,
Jayakumar
,
T.
,
Rao
,
K. B. S.
, and
Raj
,
B.
,
2004
, “
Characterization of Microstructures in Inconel 625 Using X-Ray Diffraction Peak Broadening and Lattice Parameter Measurements
,”
Scr. Mater.
,
51
(
1
), pp.
59
63
.
2.
Shankar
,
V.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2001
, “
Microstructure and Mechanical Properties of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
222
232
.
3.
Cooper
,
K. P.
,
Slebodnick
,
P.
, and
Thomas
,
E. D.
,
1996
, “
Seawater Corrosion Behavior of Laser Surface Modified Inconel 625 Alloy
,”
Mater. Sci. Eng.: A
,
206
(
1
), pp.
138
149
.
4.
Yip
,
M. W.
,
Barnes
,
S.
, and
Sarhan
,
A. A. D. M.
,
2015
, “
Deposition of a Silicon Carbide Reinforced Metal Matrix Composite (P25) Layer Using CO2 Laser
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031010
.
5.
Amano
,
R. S.
,
Marek
,
S.
,
Schultz
,
B. F.
, and
Rohatgi
,
P. K.
,
2014
, “
Laser Engineered Net Shaping Process for 316L/15% Nickel Coated Titanium Carbide Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051007
.
6.
Cooper
,
D. E.
,
Blundell
,
N.
,
Maggs
,
S.
, and
Gibbons
,
G. J.
,
2013
, “
Additive Layer Manufacture of Inconel 625 Metal Matrix Composites, Reinforcement Material Evaluation
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2191
2200
.
7.
Zheng
,
B. L.
,
Topping
,
T.
,
Smugeresky
,
J. E.
,
Zhou
,
Y. Z.
,
Biswas
,
A.
, and
Baker
,
D.
,
2010
, “
The Influence of Ni-Coated TiC on Laser-Deposited IN625 Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
3
), pp.
568
573
.
8.
Nurminen
,
J.
,
Nakki
,
J.
, and
Vuoristo
,
P.
,
2009
, “
Microstructure and Properties of Hard and Wear Resistant MMC Coatings Deposited by Laser Cladding
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
472
478
.
9.
Gu
,
D. D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2011
, “
Selective Laser Melting of In-Situ TiC/Ti5Si3 Composites With Novel Reinforcement Architecture and Elevated Performance
,”
Surf. Coat. Technol.
,
205
(
10
), pp.
3285
3292
.
10.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
.
11.
Gu
,
D. D.
,
2015
,
Laser Additive Manufacturing of High-Performance Materials
,
Springer-Verlag
,
Berlin
.
12.
Tang
,
L.
, and
Landers
,
R.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011011
.
13.
Cao
,
X. Q.
, and
Ayalew
,
B.
,
2015
, “
Partial Differential Equation-Based Multivariable Control Input Optimization for Laser-Aided Powder Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031001
.
14.
Riza
,
S. H.
,
Masood
,
S. H.
,
Wen
,
C. E.
,
Ruan
,
D.
, and
Xu
,
S. Q.
,
2014
, “
Dynamic Behaviour of High Strength Steel Parts Developed Through Laser Assisted Direct Metal Deposition
,”
Mater. Des.
,
64
, pp.
650
659
.
15.
Kamara
,
A. M.
,
Marimuthu
,
S.
, and
Li
,
L.
,
2011
, “
A Numerical Investigation Into Residual Stress Characteristics in Laser Deposited Multiple Layer Waspaloy Parts
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031013
.
16.
Gu
,
D. D.
,
Hong
,
C.
,
Jia
,
Q. B.
,
Dai
,
D. H.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M. L.
, and
Poprawe
,
R.
,
2014
, “
Combined Strengthening of Multi-Phase and Graded Interface in Laser Additive Manufactured TiC/Inconel 718 Composites
,”
J. Phys. D: Appl. Phys.
,
47
(
4
), p.
045309
.
17.
Jiang
,
D. F.
,
Hong
,
C.
,
Zhong
,
M. L.
,
Alkhayat
,
M.
,
Weisheit
,
A.
, and
Gasser
,
A.
,
2014
, “
Fabrication of Nano-TiCp Reinforced Inconel 625 Composite Coatings by Partial Dissolution of Micro-TiCp Through Laser Cladding Energy Input Control
,”
Surf. Coat. Technol.
,
249
(
25
), pp.
125
131
.
18.
Wilson
,
J. M.
, and
Shin
,
Y. C.
,
2012
, “
Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel690 Reinforced With TiC
,”
Surf. Coat. Technol.
,
207
, pp.
517
522
.
19.
Hong
,
C.
,
Gu
,
D. D.
, and
Dai
,
D. H.
,
2013
, “
Laser Metal Deposition of TiC/Inconel 718 Composites With Tailored Interfacial Microstructures
,”
Opt. Laser Technol.
,
54
, pp.
98
109
.
20.
Bi
,
G.
,
Sun
,
C. N.
, and
Nai
,
M. L.
,
2013
, “
Micro-Structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited Using LAAM
,”
Phys. Procedia
,
41
, pp.
821
827
.
21.
Zheng
,
B.
,
Zhou
,
Y.
,
Smugeresky
,
J. E.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2008
, “
Thermal Behavior and Microstructure Evolution During Laser Deposition With Laser-Engineered Net Shaping: Part II. Experimental Investigation and Discussion
,”
Metall. Mater. Trans. A
,
39
(
9
), pp.
2237
2245
.
22.
Yuan
,
P. P.
, and
Gu
,
D. D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
48
(
3
), p.
035303
.
23.
Heigel
,
J. C.
,
Gouge
,
M. F.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2016
, “
Selection of Powder or Wire Feedstock Material for the Laser Cladding of Inconel 625
,”
J. Mater. Process. Technol.
,
231
, pp.
357
365
.
24.
Gu
,
D. D.
, and
Yuan
,
P. P.
,
2015
, “
Thermal Evolution Behavior and Fluid Dynamics During Laser Additive Manufacturing of Al-Based Nanocomposites: Underlying Role of Reinforcement Weight Fraction
,”
J. Appl. Phys.
,
118
(
23
), p.
233109
.
25.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
, and
Ensz
,
M. T.
,
1999
, “
Understanding Thermal Behavior in the LENS Process
,”
Mater. Des.
,
20
, pp.
107
113
.
26.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
27.
Berjeza
,
N. A.
,
Velikevitch
,
S. P.
,
Mazhukin
,
V. I.
,
Smurov
,
I.
, and
Flamant
,
G.
,
1995
, “
Influence of Temperature Gradient to Solidification Velocity Ratio on the Structure Transformation in Pulsed- and CW-Laser Surface Treatment
,”
Appl. Surf. Sci.
,
86
(
1–4
), pp.
303
309
.
28.
Cao
,
S. N.
, and
Gu
,
D. D.
,
2015
, “
Laser Metal Deposition Additive Manufacturing of TiC/Inconel 625 Nanocomposites: Relation of Densification, Microstructures and Performance
,”
J. Mater. Res.
,
30
(
23
), pp.
3616
3628
.
29.
Boccalini
,
M.
, and
Goldenstein
,
H.
,
2001
, “
Solidification of High Speed Steels
,”
Int. Mater. Rev.
,
46
(
2
), pp.
92
115
.
30.
Elmer
,
J. W.
,
Allen
,
S. M.
, and
Eager
,
T. W.
,
1989
, “
Microstructural Development During Solidification of Stainless Steel Alloys
,”
Metall. Trans. A
,
20
(
10
), pp.
2117
2131
.
31.
Rohatgi
,
P. K.
,
Pasciak
,
K.
,
Narendranath
,
C. S.
,
Ray
,
S.
, and
Sachdev
,
A.
,
1994
, “
Evolution of Microstructure and Local Thermal Conditions During Directional Solidification of A356-SiC Particle Composites
,”
J. Mater. Sci.
,
29
(
20
), pp.
5357
5366
.
32.
Gaumann
,
M.
,
Trivedi
,
R.
, and
Kurz
,
W.
,
1997
, “
Nucleation Ahead of the Advancing Interface in Direction Solidification
,”
Mater. Sci. Eng.: A
,
226–228
, pp.
763
769
.
33.
Hadji
,
L.
,
2003
, “
Morphological Instability Prior to Particle Engulfment by a Solidifying Interface
,”
Scr. Mater.
,
48
(
6
), pp.
665
669
.
34.
Xia
,
M. J.
,
Gu
,
D. D.
,
Yu
,
G. Q.
,
Dai
,
D. H.
,
Chen
,
H. Y.
, and
Shi
,
Q. M.
,
2016
, “
Selective Laser Melting 3D Printing of Ni-Based Superalloy: Understanding Thermodynamic Mechanisms
,”
Sci. Bull.
,
61
(
13
), pp.
1013
1022
.
35.
Xia
,
M. J.
,
Gu
,
D. D.
,
Yu
,
G. Q.
,
Dai
,
D. H.
,
Chen
,
H. Y.
, and
Shi
,
Q. M.
,
2016
, “
Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel718 Alloy
,”
Int. J. Mach. Tool Manuf.
,
109
, pp.
147
157
.
36.
Dai
,
D. H.
, and
Gu
,
D. D.
,
2016
, “
Influence of Thermodynamics Within Molten Pool on Migration and Distribution State of Reinforcement During Selective Laser Melting of AlN/AlSi10Mg Composites
,”
Int. J. Mach. Tool Manuf.
,
100
, pp.
14
24
.
37.
Kruth
,
J. P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.
,
23
(
4
), pp.
357
371
.
38.
Hanumanth
,
G. S.
, and
Irons
,
G. A.
,
1996
, “
Solidification of Particle-Reinforced Metal-Matrix Composites
,”
Metall. Mater. Trans. B
,
27
(
4
), pp.
663
685
.
39.
Gu
,
D. D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G. B.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
.
40.
Zhong
,
X. L.
,
Wong
,
W. L. E.
, and
Gupta
,
M.
,
2007
, “
Enhancing Strength and Ductility of Magnesium by Integrating It With Aluminum Nanoparticles
,”
Acta. Mater.
,
55
(
18
), pp.
6338
6344
.
41.
Men
,
H.
,
Jiang
,
B.
, and
Fan
,
Z.
,
2010
, “
Mechanisms of Grain Refinement by Intensive Shearing of AZ91 Alloy Melt
,”
Acta Mater.
,
58
(
19
), pp.
6526
6534
.
42.
Paula
,
C. P.
,
Ganesha
,
P.
,
Mishraa
,
S. K.
,
Bhargavaa
,
P.
,
Negib
,
J.
, and
Natha
,
A. K.
,
2007
, “
Investigating Laser Rapid Manufacturing for Inconel-625 Components
,”
Opt. Laser Tech.
,
39
(
4
), pp.
800
805
.
You do not currently have access to this content.