Discussion of big data (BD) has been about data, software, and methods with an emphasis on retail and personalization of services and products. Big data also has impacted engineering and manufacturing and has resulted in better and more efficient manufacturing operations, improved quality, and more personalized products. A less apparent effect is that big data have changed problem solving: the problems we choose to solve, the strategy we seek, and the tools we employ. This paper illustrates this point by showing how the big data style of thinking enabled the development of a new quality assurance philosophy called process monitoring for quality (PMQ). PMQ is a blend of process monitoring and quality control (QC) that is founded on big data and big model (BDBM), which are catalysts for the next step in the evolution of the quality movement. Process monitoring (PM) for quality was used to evaluate the performance of the ultrasonically welded battery tabs in the new Chevrolet Volt, an extended range electric vehicle.

References

1.
Harding
,
J. A.
,
Shahbaz
,
M.
,
Srinivas
, and
Kusiak
,
A.
,
2006
, “
Data Mining in Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
969
976
.
2.
Cai
,
W. W.
,
Kang
,
B.
, and
Hu
,
S. J.
,
2017
,
Ultrasonic Welding for Lithium-Ion Batteries
,
ASME Press
,
New York
.
3.
Zhou
,
Z.-H.
,
2012
,
Ensemble Methods: Foundations and Algorithms
,
CRC Press
,
Boca Raton, FL
.
4.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
5.
Tulyakov
,
S.
,
Jaeger
,
S.
,
Govindaraju
,
V.
, and
Doermann
,
D.
,
2008
, “
Review of Classifier Combination Methods
,”
Machine Learning in Document Analysis and Recognition
,
Springer
,
Berlin
, pp.
361
386
.
6.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
, Vol.
1
,
Statistics Springer
,
Berlin
.
7.
Box
,
G.
,
1995
, “
Total Quality: Its Origins and Its Future
,”
Total Quality Management
,
Springer
,
Dordrecht, The Netherlands
, pp.
119
127
.
8.
Astashev
,
V. K.
, and
Babitsky
,
V. I.
,
2007
,
Ultrasonic Processes and Machines
,
Springer
,
Berlin
.
9.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.
,
2014
, “
Dynamic Stress Analysis of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041011
.
10.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031016
.
11.
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Jin
,
J. J.
,
Abell
,
J. A.
, and
Spicer
,
J. P.
,
2016
, “
Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051005
.
12.
Kay
,
S. M.
,
1998
,
Fundamentals of Statistical Signal Processing, Volume II: Detection Theory
(Prentice Hall Signal Processing Series),
Prentice Hall
,
Upper Saddle River, NJ
.
13.
Liu
,
H.
, and
Motoda
,
H.
,
1998
,
Feature Extraction, Construction and Selection: A Data Mining Perspective
(The Springer International Series in Engineering and Computer Science), Vol.
453
,
Springer
,
New York
.
14.
White
,
H.
,
2000
, “
A Reality Check for Data Snooping
,”
Econometrica
,
68
(
5
), pp.
1097
1126
.
15.
Leamer
,
E.
,
1978
,
Specification Searches: Ad Hoc Inference With Nonexperimental Data
(Applied Probability and Statistics),
Wiley
,
New York
.
16.
Lee
,
S.
,
Lee
,
H.
,
Abbeel
,
P.
, and
Ng
,
A.
,
2006
, “
Efficient L1 Regularized Logistic Regression
,”
National Conference on Artificial Intelligence
, Boston, MA, July 16–20, Vol.
21
, p.
401
.https://www.aaai.org/Papers/AAAI/2006/AAAI06-064.pdf
17.
Jensen
,
D. D.
, and
Cohen
,
P. R.
,
2000
, “
Multiple Comparisons in Induction Algorithms
,”
Mach. Learn.
,
38
(
3
), pp.
309
338
.
18.
Abell
,
J. A.
,
Spicer
,
J. P.
,
Wincek
,
M. A.
,
Wang
,
H.
, and
Chakraborty
,
D.
,
2014
, “
Binary Classification of Items of Interest in a Repeatable Process
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
US8757469B2
.http://www.google.co.in/patents/US8757469
19.
Dietterich
,
T.
,
2000
, “
Ensemble Methods in Machine Learning
,”
International Workshop on Multiple Classifier Systems
,
Springer
,
Berlin
, pp.
1
15
.
20.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2015
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
.
21.
Kang
,
H.
, and
Kim
,
J.
,
1997
, “
A Probabilistic Framework for Combining Multiple Classifiers at Abstract Level
,”
Fourth International Conference on Document Analysis and Recognition
(
ICDAR
), Ulm, Germany, Aug. 18–20, Vol.
2
, pp.
870
874
.
22.
Ho
,
T.
,
Hull
,
J.
, and
Srihari
,
S.
,
1994
, “
Decision Combination in Multiple Classifier Systems
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
16
(
1
), pp.
66
75
.
23.
Chakraborty
,
D.
,
Kovvali
,
N.
,
Papandreou-Suppappola
,
A.
, and
Chattopadhyay
,
A.
,
2011
, “
Structural Damage Detection With Insufficient Data Using Transfer Learning Techniques
,”
Proc. SPIE
,
7981
, pp.
1
9
.
24.
Kang
,
H.
, and
Kim
,
J.
,
1995
, “
Dependency Relationship Based Decision Combination in Multiple Classifier Systems
,”
11th International Joint Conference on Artificial Intelligence
(
IJCAI
), Montreal, QC, Canada, Aug. 20–25, Vol. 2, p. 1130.https://www.ijcai.org/Proceedings/95-2/Papers/015.pdf
25.
Chakraborty
,
D.
,
Kovvali
,
N.
,
Wei
,
J.
,
Papandreou-Suppappola
,
A.
,
Cochran
,
D.
, and
Chattopadhyay
,
A.
,
2009
, “
Damage Classification Structural Health Monitoring in Bolted Structures Using Time-Frequency Techniques
,”
J. Intell. Mater. Syst. Struct.
,
20
(
11
), pp.
1289
1305
.
26.
Breivold
,
H. P.
,
Crnkovic
,
I.
, and
Larsson
,
M.
,
2012
, “
A Systematic Review of Software Architecture Evolution Research
,”
Inf. Software Technol.
,
54
(
1
), pp.
16
40
.
27.
Wheeler
,
D. A.
,
2003
, “Program Library HOWTO,” Free Software Foundation, Inc., Boston, MA, accessed June 10, 2017, http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
28.
Spicer
,
J. P.
,
Chakraborty
,
D.
,
Wincek
,
M. A.
,
Wang
,
H.
,
Abell
,
J. A.
,
Bracey
,
J.
, and
Cai
,
W. W.
,
2014
, “
Automatic Monitoring of Vibration Welding Equipment
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
US20140138012A1
.https://www.google.com/patents/US20140138012
29.
Spicer
,
J. P.
,
Cai
,
W. W.
,
Chakraborty
,
D.
, and
Mink
,
K.
,
2015
, “
Clamp Force and Alignment Checking Device
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
U.S. 20150165673A1
.https://www.google.ch/patents/US20150165673
30.
Spicer
,
J. P.
,
Abell
,
J. A.
,
Wincek
,
M. A.
,
Chakraborty
,
D.
,
Bracey
,
J.
,
Wang
,
H.
,
Tavora
,
P. W.
,
Davis
,
J. S.
,
Hutchinson
,
D. C.
,
Reardon
,
R. L.
, and
Utz
,
S.
,
2013
, “
Quality Status Display for a Vibration Welding Process
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
US20130105557A1
.http://www.google.co.in/patents/US20130105557
31.
Juran
,
J. M.
,
1997
, “
Early SQC: A Historical Supplement
,”
Qual. Prog.
,
30
(
9
), pp.
73
81
.http://asq.org/qic/display-item/?item=13270
32.
Moen
,
R. D.
, and
Norman
,
C. L.
,
2010
, “
Circling Back
,”
Qual. Prog.
,
43
(
11
), pp.
22
28
.http://asq.org/quality-progress/2010/11/basic-quality/circling-back.html
33.
Mandru
,
L.
,
Patrascu
,
L.
,
Carstea
,
C.-G.
,
Popesku
,
A.
, and
Birsan
,
O.
,
2011
, “
Paradigms of Total Quality Management
,”
Recent Researched in Manufacturing Engineering
, Transilvania University of Braşov, Braşov, Romania, pp.
121
126
.
34.
Chua
,
R.
, and
Janssen
,
A.
,
2001
, “
Six Sigma: A Pursuit of Bottom-Line Results
,”
Eur. Qual.
,
8
(
3
), pp.
12
15
.https://isssp.org/members-content/six-sigma-a-pursuit-of-bottom-line-results/
35.
Kwak
,
Y. H.
, and
Anbari
,
F. T.
,
2006
, “
Benefits, Obstacles, and Future of Six Sigma Approach
,”
Technovation
,
26
(
5
), pp.
708
715
.
36.
Chowdhury
,
S.
,
2002
,
Design for Six Sigma
,
Financial Times Prentice Hall
,
Upper Saddle River, NJ
.
37.
Basem
,
E.-H.
,
2008
,
Design for Six Sigma: A Roadmap for Product Development
,
McGraw-Hill
,
New York
.
38.
Shen
,
W.
,
2016
, “
Data-Driven Discovery of Models (D3M)
,” Defense Advanced Research Projects Agency, Arlington, VA.
You do not currently have access to this content.