The forming process of powder bed for additive manufacturing (AM) is analyzed and is simplified to three processes, including random packing, layering, and compression. The processes are simulated by using the discrete element method (DEM). First, the particles with monosize, bimodal, and Gaussian size distributions are randomly packed. Then, the packed particles are layered with different thicknesses. Finally, a 20 μm compression is applied on the top surface of the layered powder beds. All the processes are simulated based on the soft sphere model. Packing density and coordination number are calculated to evaluate the packing mesostructure. The results indicate that the packing density and coordination number increase with the layer thickness increasing in the initial packing, and compression can effectively increase the density and coordination number of powder bed and decrease the effect of ranging layer thickness. The results also show that powder bed with monosize distribution initially has the best combination performance. Our research provides a theoretical guide to choosing the layer thickness and size distribution initially of powder bed for AM.

References

1.
Yan
,
X.
, and
Gu
,
P.
,
1996
, “
A Review of Rapid Prototyping Technologies and Systems
,”
Comput. Aided Des.
,
28
(
4
), pp.
307
318
.
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
4.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.
5.
Petrovic
,
V.
,
Gonzalez
,
J. V. H.
,
Ferrando
,
O. J.
,
Gordillo
,
J. D.
,
Puchades
,
J. R. B.
, and
Grinan
,
L. P.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.
6.
Vandenbroucke
,
B.
, and
Kruth
,
J. P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,
13
(
4
), pp.
196
203
.
7.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
8.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
,
2006
, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tool Manuf.
,
46
(
12–13
), pp.
1459
1468
.
9.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
10.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
(
10
), pp.
401
477
.
11.
Kumar
,
S.
,
2003
, “
Selective Laser Sintering: A Qualitative and Objective Approach
,”
JOM
,
55
(
10
), pp.
43
47
.
12.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadroitsev
,
I. A.
,
Laoui
,
T.
,
Froyen
,
L.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
,
2004
, “
Balling Processes During Selective Laser Treatment of Powders
,”
Rapid Prototyping J.
,
10
(
2
), pp.
78
87
.
13.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031004
.
14.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2008
, “
Discrete Particle Simulation of Particulate Systems: A Review of Major Applications and Findings
,”
Chem. Eng. Sci.
,
63
(
23
), pp.
5728
5770
.
15.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2007
, “
Discrete Particle Simulation of Particulate Systems: Theoretical Developments
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3378
3396
.
16.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2000
, “
Computer Simulation of the Packing of Fine Particles
,”
Phys. Rev. E
,
62
(
3
), pp.
3900
3908
.
17.
Shi
,
Y.
, and
Zhang
,
Y.
,
2008
, “
Simulation of Random Packing of Spherical Particles With Different Size Distributions
,”
Appl. Phys. A
,
92
(
3
), pp.
621
626
.
18.
Kovaleva
,
I.
,
Kovalev
,
O.
, and
Smurov
,
I.
,
2014
, “
Model of Heat and Mass Transfer in Random Packing Layer of Powder Particles in Selective Laser Melting
,”
Phys. Procedia
,
56
, pp.
400
410
.
19.
Zohdi
,
T. I.
,
2013
, “
Rapid Simulation of Laser Processing of Discrete Particulate Materials
,”
Arch. Comput. Methods Eng.
,
20
(
4
), pp.
309
325
.
20.
Zohdi
,
T. I.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing—A Computation Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
21.
Parteli
,
E. J. R.
, and
Pöschel
,
T.
,
2016
, “
Particle-Based Simulation of Powder Application in Additive Manufacturing
,”
Powder Technol.
,
288
, pp.
96
102
.
22.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
23.
Dou
,
X.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Effects of Contact Force Model and Size Distribution on Microsized Granular Packing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021003
.
24.
Silbert
,
L. E.
,
Ertas
,
D.
,
Grest
,
G. S.
,
Halsey
,
T. C.
,
Levine
,
D.
, and
Plimpton
,
S. J.
,
2001
, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
,
64
(
5
), p.
051302
.
25.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, p.
128
.
26.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2003
, “
Effect of Material Properties on the Packing of Fine Particles
,”
J. Appl. Phys.
,
94
(
5
), pp.
3025
3034
.
27.
Jia
,
T.
,
Zhang
,
Y.
,
Chen
,
J. K.
, and
He
,
Y. L.
,
2012
, “
Dynamic Simulation of Granular Packing of Fine Cohesive Particles With Different Size Distributions
,”
Powder Technol.
,
218
, pp.
76
85
.
28.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2012
, “
Simulation of Granular Packing of Particles With Different Size Distributions
,”
Comp. Mater. Sci.
,
51
(
1
), pp.
172
180
.
29.
Siiriä
,
S.
, and
Yliruusi
,
J.
,
2007
, “
Particle Packing Simulations Based on Newtonian Mechanics
,”
Powder Technol.
,
174
(
3
), pp.
82
92
.
30.
Suzuki
,
M.
,
Shinmura
,
T.
,
Iimura
,
K.
, and
Hirota
,
M.
,
2008
, “
Study of the Wall Effect on Particle Packing Structure Using X-Ray Micro Computed Tomography
,”
Adv. Powder Technol.
,
19
(
2
), pp.
183
195
.
31.
Tory
,
E. M.
,
Church
,
B. H.
,
Tam
,
M. K.
, and
Ratner
,
M.
,
1973
, “
Simulated Random Packing of Equal Spheres
,”
Can. J. Chem. Eng.
,
51
(
4
), pp.
484
493
.
32.
Desmond
,
K. W.
, and
Weeks
,
E. R.
,
2014
, “
Influence of Particle Size Distribution on Random Close Packing of Spheres
,”
Phys. Rev. E
,
90
(
2
), p.
022204
.
33.
Parteli
,
E. J. R.
,
Schmidt
,
J.
,
Bluemel
,
C.
,
Wirth
,
K. E.
,
Peukert
,
W.
, and
Poeschel
,
T.
,
2014
, “
Attractive Particle Interaction Forces and Packing Density of Fine Glass Powders
,”
Sci. Rep.
,
4
, p.
6227
.
34.
Alderson
,
N. A.
,
2012
, “
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
,”
Ph.D. thesis
, North Carolina State University, Raleigh, NC.
35.
Tolochko
,
N. K.
,
Arshinov
,
M. K.
,
Gusarov
,
A. V.
,
Titov
,
V. I.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Mechanisms of Selective Laser Sintering and Heat Transfer in Ti Powder
,”
Rapid Prototyping J.
,
9
(
5
), pp.
314
326
.
36.
Gusarov
,
A. V.
, and
Smurov
,
I.
,
2010
, “
Modeling the Interaction of Laser Radiation With Powder Bed at Selective Laser Melting
,”
Phys. Procedia
,
5
, pp.
381
394
.
37.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.
38.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
39.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
,
2005
, “
Photopyroelectric Measurement of Thermal Conductivity of Metallic Powders
,”
J. Appl. Phys.
,
97
(
2
), p.
024905
.
40.
Zhang
,
B.
, and
Coddet
,
C.
,
2015
, “
Selective Laser Melting of Iron Powder: Observation of Melting Mechanism and Densification Behavior Via Point-Track-Surface-Part Research
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051001
.
41.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.
You do not currently have access to this content.