This work was undertaken to analyze the stress/strain state at the critical sites in friction stir welded specimens and, further, to assess the fatigue strength of friction stir welded specimens with conventional fatigue life prediction approaches. Elastoplastic and elastic finite-element stress/strain analyses were carried out for friction-stir-linear-welded (FSLW) specimens made of magnesium alloys. The calculated stress/strain at the periphery of the weld nugget was used to evaluate the fatigue life with local life prediction approaches. First, elastoplastic finite-element models were built according to experimental specimen profiles. Fatigue life prediction was conducted with Morrow's modified Manson–Coffin (MC) damage equation and the Smith–Watson–Topper (SWT) damage equation, respectively, for different specimens under different loading cases. Life prediction results showed that both equations can to some extent give reasonable results, especially within a low-cycle fatigue life regime, with the SWT damage equation giving more conservative results. As for high-cycle life, predicted results were much longer and scattered for both methods. Shell element elastic models were then used to calculate the structural stress at the periphery of the weld nuggets. The correlation between structural stress amplitude and experimental life showed the appropriateness of the structural stress fatigue evaluation for friction stir welds. The effect of the notches at the periphery of the faying surface on life prediction was further discussed.

References

1.
Shahri
,
M. M.
,
Höglundb
,
T.
, and
Sandströma
,
R.
,
2012
, “
Eurocode 9 to Estimate the Fatigue Life of Friction Stir Welded Aluminium Panels
,”
Eng. Struct.
,
45
(
12
), pp.
307
313
.
2.
Papadopoulos
,
M.
,
Tavares
,
S.
,
Pacchione
,
M.
, and
Pantelakis
,
S.
,
2013
, “
Mechanical Behavior of AA 2024 Friction Stir Overlap Welds
,”
Int. J. Struct. Integr.
,
4
(
1
), pp.
108
120
.
3.
Badarinarayan
,
H.
,
Shi
,
Y.
,
Li
,
X.
, and
Okamoto
,
K.
,
2009
, “
Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminum 5754-O Sheets
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
814
823
.
4.
Buffa
,
G.
,
Campanile
,
G.
,
Fratini
,
L.
, and
Prisco
,
A.
,
2009
, “
Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Properties
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
19
26
.
5.
Fersini
,
D.
, and
Pirondi
,
A.
,
2007
, “
Fatigue Behavior of Al2024–T3 Friction Stir Welded Lap Joints
,”
Eng. Fract. Mech.
,
74
(
4
), pp.
468
480
.
6.
Ericsson
,
M.
,
Jin
,
L. Z.
, and
Sandstrom
,
R.
,
2007
, “
Fatigue Properties of Friction Stir Overlap Welds
,”
Int. J. Fatigue
,
29
(
1
), pp.
57
68
.
7.
Cantin
,
G. M.
,
David
,
S. A.
,
Lara-Curzio
,
E.
, and
Babu
,
S. S.
,
2005
, “
Microstructure Characteristics and Mechanical Properties of Friction Skew-Stir Welded Lap Joints in 5083-O Aluminum
,”
7th International Conference on Trends in Welding Research
,
Pine Mountains, GA
, May 16–20, pp.
185
190
.
8.
Cederqvist
,
L.
, and
Reynolds
,
A. P.
,
2001
, “
Factors Affecting the Properties of Friction Stir Welded Aluminum Lap Joints
,”
Weld. J. (Res. Suppl.)
,
80
, pp.
281
287
.
9.
Lemmen
,
H. J. K.
,
Alderliesten
,
R. C.
, and
Benedictus
,
R.
,
2011
, “
Evaluating the Fatigue Initiation Location in Friction Stir Welded AA2024-T3 Joints
,”
Int. J. Fatigue
,
33
(
3
), pp.
466
476
.
10.
Xiao
,
L.
,
Liu
,
R.
,
Zhou
,
Y.
, and
Esmaeili
,
S.
,
2010
, “
Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1511
1522
.
11.
Seyed
,
B. B.
,
Hamid
,
J.
, and
Steve
,
L.
,
2011
, “
Characterization of Magnesium Spot Welds Under Tensile and Cyclic Loadings
,”
Mater. Des.
,
32
(
10
), pp.
4890
4900
.
12.
Ali
,
U.
,
2012
, “
Numerical Modeling of Failure in Magnesium Alloys Under Axial Compression and Bending for Crashworthiness Applications
,”
Masters thesis
, The University of Waterloo, ON, Canada.
13.
Nieslony
,
A.
,
Dsoki
,
C. E.
,
Kaufmann
,
H.
, and
Krug
,
P.
,
2008
, “
New Method for Evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood Equations With Respect to Compatibility
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1967
1977
.
14.
Jinu
,
G. R.
, and
Sathiya
,
P.
,
2010
, “
Failure Analysis on t 92 Steel Tube and Compared With Predicted Number of Cycles to Failure Using Coffin–Manson Equation
,”
Int. J. Eng. Sci. Technol.
,
24
(
1–2
), pp.
21
26
.
15.
Heckel
,
T. K.
, and
Christ
,
H. J.
,
2010
, “
Thermomechanical Fatigue of the TiAl Intermetallic Alloy TNB-V2
,”
Exp. Mech.
,
50
(
6
), pp.
717
724
.
16.
Firat
,
M.
,
2011
, “
A Computer Simulation of Four-Point Bending Fatigue of a Rear Axle Assembly
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2137
2148
.
17.
Pereira
,
A. M.
,
Ferreira
,
J. A. M.
,
Antunes
,
F. V.
, and
Bártolo
,
P. J.
,
2014
, “
Assessment of the Fatigue Life of Aluminium Spot-Welded and Weld-Bonded Joints
,”
J. Adhes. Sci. Technol.
,
28
(
14
), pp.
1432
1450
.
18.
Fermer
,
M.
,
Andreasson
,
M.
, and
Frodin
,
B.
,
1998
, “
Fatigue Life Prediction of MAG-Welded Thin-Sheet Structures
,”
SAE
Technical Paper No. 982311.
19.
Yin
,
Y. H.
,
Sun
,
N.
,
North
,
T. H.
, and
Hu
,
S. S.
,
2010
, “
Hook Formation and Mechanical Properties in AZ31 Friction Stir Spot Welds
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
2062
2070
.
20.
Xu
,
X. D.
,
Yang
,
X. Q.
,
Zhou
,
G.
, and
Tong
,
J. H.
,
2012
, “
Microstructures and Fatigue Properties of Friction Stir Lap Welds in Aluminum Alloy AA6061-T6
,”
Mater. Des.
,
35
, pp.
175
183
.
21.
Radaj
,
D.
,
Sonsino
,
C. M.
, and
Fricke
,
W.
,
2006
,
Fatigue Assessment of Welded Joints by Local Approaches
, 2nd ed.,
Woodhead Publishing Limited
,
Cambridge, UK.
22.
Dong
,
P.
,
2001
, “
A Structural Stress Definition and Numerical Implementation for Fatigue Analysis of Welded Joints
,”
Int. J. Fatigue
,
23
(
10
), pp.
865
876
.
23.
Rao
,
H. M.
,
Jordon
,
J. B.
,
Barkey
,
M. E.
,
Guo
,
Y. B.
,
Su
,
X.
, and
Badarinarayan
,
H.
,
2013
, “
Influence of Structural Integrity on Fatigue Behavior of Friction Stir Spot Welded AZ31 Mg Alloy
,”
Materials Science and Engineering A
,
564
, pp.
369
380
.
24.
Muci-Küchler
,
K. H.
,
Kalagara
,
S.
, and
Arbegast
,
W. J.
,
2010
, “
Simulation of a Refill Friction Stir Spot Welding Process Using a Fully Coupled Thermo-Mechanical FEM Model
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
014503
.
25.
Lomolino
,
S.
,
Tovo
,
R.
, and
Dos Santos
,
J.
,
2005
, “
On the Fatigue Behavior and Design Curves of Friction Stir Butt-Welded Al Alloys
,”
Int. J. Fatigue
,
27
(
3
), pp.
305
316
.
26.
Ni
,
D. R.
,
Chen
,
D. L.
,
Xiao
,
B. L.
,
Wang
,
D.
, and
Ma
,
Z. Y.
,
2013
, “
Residual Stresses and High Cycle Fatigue Properties of Friction Stir Welded SiCp/AA2009 Composites
,”
Int. J. Fatigue
,
55
, pp.
64
73
.
You do not currently have access to this content.