The metal matrix composites (MMCs) have been widely used where high specific properties and temperature resistance are required, particularly in aerospace applications. In this work, an ASTM-1100 aluminum alloy in the form of sheets was reinforced with multiwalled carbon nanotubes (MWCNTs) by a novel technique which we have called sandwich technique. Carbon nanotubes (CNTs) are dispersed in a polyvinyl alcohol (PVA) solution; this solution is poured into a container and dried to obtain a reinforced polymer, which is then stretched to obtain a sheet with CNTs aligned in the stretching direction. These composite sheets were stacked with aluminum sheets, and then these stacks were hot compacted in a die using an argon atmosphere to prevent the damage of the CNTs. During this process, most of the polymer evaporates and aluminum diffusion allows obtaining a consolidated matrix with a banded structure of CNTs. The mechanical properties of the composite were measured by tensile and nano-indentation tests, showing increases of up to 100% in the elastic modulus and significant increases in yield and ultimate strength with respect to unreinforced material. Field emission scanning electron microscopy (FESEM) analyses showed a good dispersion of the CNTs within the bands with no evidence of CNTs' damage. No harmful phases were found in the composite after micro X-ray diffraction (XRD) tests. The results showed that the proposed technique is promissory to solve some of the problems in the nano-MMCs manufacturing such as dispersion and alignment of the reinforcing phase.

References

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.
2.
Esawi
,
A.
,
Morsi
,
K.
,
Sayed
,
A.
,
Taher
,
M.
, and
Lanka
,
S.
,
2010
, “
Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2237
2241
.
3.
Morsi
,
K.
, and
Esawi
,
A.
,
2007
, “
Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)–CNT Composite Powders
,”
J. Mater. Sci.
,
42
(
13
), pp.
4954
4959
.
4.
Morsi
,
K.
,
Esawi
,
A.
,
Borah
,
P.
,
Lanka
,
S.
,
Sayed
,
A.
, and
Taher
,
M.
,
2010
, “
Properties of Single and Dual Matrix Aluminum–Carbon Nanotube Composites Processed Via Spark Plasma Extrusion (SPE)
,”
Mater. Sci. Eng. A
,
527
(
21–22
), pp.
5686
5690
.
5.
Poncharal
,
P.
,
Wang
,
Z.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
,
1999
, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
,
283
(
5407
), pp.
1513
1516
.
6.
Qian
,
D.
, and
Dickey
,
E.
,
2008
, “
In‐Situ Transmission Electron Microscopy Studies of Polymer–Carbon Nanotube Composite Deformation
,”
J. Microsc.
,
204
(
1
), pp.
39
45
.
7.
Treacy
,
M.
,
Ebbesen
,
T.
, and
Gibson
,
J.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(
6584
), pp.
678
680
.
8.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
(
5334
), pp.
1971
1975
.
9.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
5453
), pp.
637
640
.
10.
Amano
,
R.
,
Marek
,
S.
,
Schultz
,
B.
, and
Rohatgi
,
P.
,
2014
, “
Laser Engineered Net Shaping Process for 316L/15% Nickel Coated Titanium Carbide Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051007
.
11.
Bakshi
,
S. R.
,
Singh
,
V.
,
Balani
,
K.
,
McCartney
,
D. G.
,
Seal
,
S.
, and
Agarwal
,
A.
,
2008
, “
Carbon Nanotube Reinforced Aluminum Composite Coating Via Cold Spraying
,”
Surf. Coat. Technol.
,
202
(
21
), pp.
5162
5169
.
12.
Cha
,
S. I.
,
Kim
,
K. T.
,
Lee
,
K. H.
,
Mo
,
C. B.
, and
Hong
,
S. H.
,
2005
, “
Strengthening and Toughening of Carbon Nanotube Reinforced Alumina Nanocomposite Fabricated by Molecular Level Mixing Process
,”
Scr. Mater.
,
53
(
7
), pp.
793
797
.
13.
Chen
,
W.
,
Tu
,
J.
,
Wang
,
L.
,
Gan
,
H.
,
Xu
,
Z.
, and
Zhang
,
X.
,
2003
, “
Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites
,”
Carbon
,
41
(
2
), pp.
215
222
.
14.
Deng
,
C.
,
Wang
,
D.
,
Zhang
,
X.
, and
Li
,
A.
,
2007
, “
Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites
,”
Mater. Sci. Eng. A
,
444
(
1
), pp.
138
145
.
15.
He
,
C.
,
Zhao
,
N.
,
Shi
,
C.
,
Du
,
X.
,
Li
,
J.
,
Li
,
H.
, and
Cui
,
Q.
,
2007
, “
An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al‐Matrix Composites
,”
Adv. Mater.
,
19
(
8
), pp.
1128
1132
.
16.
Jeyasimman
,
D.
,
Sivaprasad
,
K.
,
Sivasankaran
,
S.
, and
Narayanasamy
,
R.
,
2014
, “
Fabrication and Consolidation Behavior of Al 6061 Nanocomposite Powders Reinforced by Multi-Walled Carbon Nanotubes
,”
Powder Technol.
,
258
, pp.
189
197
.
17.
Jiang
,
L.
,
Fan
,
G.
,
Li
,
Z.
,
Kai
,
X.
,
Zhang
,
D.
,
Chen
,
Z.
,
Humphries
,
S.
,
Heness
,
G.
, and
Yeung
,
W. Y.
,
2011
, “
An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder
,”
Carbon
,
49
(
6
), pp.
1965
1971
.
18.
Kang
,
K.
,
Bae
,
G.
,
Kim
,
B.
, and
Lee
,
C.
,
2012
, “
Thermally Activated Reactions of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composite During the Thermal Spray Consolidation
,”
Mater. Chem. Phys.
,
133
(
1
), pp.
495
499
.
19.
Kwon
,
H.
,
Estili
,
M.
,
Takagi
,
K.
,
Miyazaki
,
T.
, and
Kawasaki
,
A.
,
2009
, “
Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites
,”
Carbon
,
47
(
3
), pp.
570
577
.
20.
Kwon
,
H.
, and
Leparoux
,
M.
,
2012
, “
Hot Extruded Carbon Nanotube Reinforced Aluminum Matrix Composite Materials
,”
Nanotechnology
,
23
(
41
), p.
415701
.
21.
Kwon
,
H.
,
Park
,
D. H.
,
Silvain
,
J. F.
, and
Kawasaki
,
A.
,
2010
, “
Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
546
550
.
22.
Kwon
,
H.
,
Saarna
,
M.
,
Yoon
,
S.
,
Weidenkaff
,
A.
, and
Leparoux
,
M.
,
2014
, “
Effect of Milling Time on Dual-Nanoparticulate-Reinforced Aluminum Alloy Matrix Composite Materials
,”
Mater. Sci. Eng. A
,
590
, pp.
338
345
.
23.
Laha
,
T.
,
Agarwal
,
A.
,
McKechnie
,
T.
, and
Seal
,
S.
,
2004
, “
Synthesis and Characterization of Plasma Spray Formed Carbon Nanotube Reinforced Aluminum Composite
,”
Mater. Sci. Eng. A
,
381
(
1
), pp.
249
258
.
24.
Laha
,
T.
,
Liu
,
Y.
, and
Agarwal
,
A.
,
2007
, “
Carbon Nanotube Reinforced Aluminum Nanocomposite Via Plasma and High Velocity Oxy-Fuel Spray Forming
,”
J. Nanosci. Nanotechnol.
,
7
(
2
), pp.
515
524
.
25.
Li
,
H.
,
Kang
,
J.
,
He
,
C.
,
Zhao
,
N.
,
Liang
,
C.
, and
Li
,
B.
,
2013
, “
Mechanical Properties and Interfacial Analysis of Aluminum Matrix Composites Reinforced by Carbon Nanotubes With Diverse Structures
,”
Mater. Sci. Eng. A
,
577
, pp.
120
124
.
26.
Liao
,
J.
, and
Tan
,
M.-J.
,
2011
, “
Mixing of Carbon Nanotubes (CNTs) and Aluminum Powder for Powder Metallurgy Use
,”
Powder Technol.
,
208
(
1
), pp.
42
48
.
27.
Liu
,
Z.
,
Xiao
,
B.
,
Wang
,
W.
, and
Ma
,
Z.
,
2013
, “
Developing High-Performance Aluminum Matrix Composites With Directionally Aligned Carbon Nanotubes by Combining Friction Stir Processing and Subsequent Rolling
,”
Carbon
,
62
, pp.
35
42
.
28.
Liu
,
Q.
,
Ke
,
L.
,
Liu
,
F.
,
Huang
,
C.
,
Xing
,
L.
, and
Bacsa
,
R. R.
,
2013
, “
Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing
,”
Mater. Des.
,
45
, pp.
343
348
.
29.
Shin
,
S.
,
Choi
,
H.
, and
Bae
,
D.
,
2014
, “
Micro-Alloying Assisted Consolidation of Aluminum/Carbon Nanotubes Powder
,”
Mater. Sci. Eng. A
,
599
, pp.
46
50
.
30.
Tu
,
J.
,
Yang
,
Y.
,
Wang
,
L.
,
Ma
,
X.
, and
Zhang
,
X.
,
2001
, “
Tribological Properties of Carbon-Nanotube-Reinforced Copper Composites
,”
Tribol. Lett.
,
10
(
4
), pp.
225
228
.
31.
Xu
,
C.
,
Wei
,
B.
,
Ma
,
R.
,
Liang
,
J.
,
Ma
,
X.
, and
Wu
,
D.
,
1999
, “
Fabrication of Aluminum–Carbon Nanotube Composites and Their Electrical Properties
,”
Carbon
,
37
(
5
), pp.
855
858
.
32.
Zhou
,
S.
,
Zhang
,
X.
,
Ding
,
Z.
,
Min
,
C.
,
Xu
,
G.
, and
Zhu
,
W.
,
2007
, “
Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressureless Infiltration Technique
,”
Composites, Part A
,
38
(
2
), pp.
301
306
.
33.
Rozhin
,
A. G.
,
Sakakibara
,
Y.
,
Kataura
,
H.
,
Matsuzaki
,
S.
,
Ishida
,
K.
,
Achiba
,
Y.
, and
Tokumoto
,
M.
,
2005
, “
Anisotropic Saturable Absorption of Single-Wall Carbon Nanotubes Aligned in Polyvinyl Alcohol
,”
Chem. Phys. Lett.
,
405
(
4
), pp.
288
293
.
34.
Sierra Gallego
,
G.
,
Barrault
,
J.
,
Batiot-Dupeyrat
,
C.
, and
Mondragón
,
F.
,
2010
, “
Production of Hydrogen and MWCNTs by Methane Decomposition Over Catalysts Originated From LaNiO3 Perovskite
,”
Catal. Today
,
149
(
3
), pp.
365
371
.
35.
Isaza
,
S. M. C.
, and
Meza
,
J. M.
,
2013
, “
A Nanoindentation Study of Mechanical Properties of Polyvinyl Alcohol Reinforced With Carbon Nanotubes
,” Colombia-US Workshop on Nanotechnology in Energy and Medical Applications, Universidad de Antioquia, Plaza Mayor, Medellín, Colombia.
You do not currently have access to this content.