Additive manufacturing (AM), or 3D printing, is drawing considerable contemporary interest due to its characteristics of high material utilization, great flexibility in product design, and inherent moldless process. Arc-based AM (AAM) is a promising AM method with high deposition rate and favorable buildup quality. Components made by AAM are fabricated through superimposed weld beads deposited from metal wire. Unlike laser-based additive manufacturing, AAM is more difficult to control. Because of the large energy input of the energy source and the liquidity of the melting metal material, bottleneck problems like shrinkage porosity, cracking, residual stresses, and deformation occur. Resultant poor geometrical accuracy and mechanical property keep AAM from industrial application. Especially in the aerospace industry, structural and mechanical property specifications are stringent and critical. This paper presents a novel hybrid manufacturing method by using hot-rolling process to assist the arc welding to solve the above problems. Initially, a miniature metamorphic rolling mechanism (MRM) was developed using metamorphic mechanism theory. Configuration and topology of the MRM can change according to the feature of the components to roll the top and lateral surfaces of the bead. Subsequently, three single-pass multilayer walls were built, respectively, for comparison. The rolled results show significant improvement in geometrical accuracy of the built features. Tensile test results demonstrate improvement in mechanical properties. The improved mechanical properties of rolled specimens are superior to wrought material in travel direction. Microstructure comparisons indicate columnar grains observed in vertical direction and fusion zones were suppressed. Eventually, fabrication of a large-scale aerospace component validates the feasibility of industry application for the hybrid manufacturing technology.

References

1.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
London
.
3.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.
4.
Sachs
,
E.
,
Cima
,
M.
,
Williams
,
P.
,
Brancazio
,
D.
, and
Cornie
,
J.
,
1992
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
ASME J. Manuf. Sci. Eng.
,
114
(
4
), pp.
481
488
.
5.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann. Manuf. Technol.
,
52
(
2
), pp.
589
609
.
6.
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
1999
, “
Solid Freeform Fabrication
,”
IEEE Spectr.
,
36
(
2
), pp.
34
36
.
7.
Song
,
Y. A.
,
Park
,
S.
,
Choi
,
D.
, and
Jee
,
H.
,
2005
, “
3D Welding and Milling—Part I: A Direct Approach for Freeform Fabrication of Metallic Prototypes
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
1057
1062
.
8.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
.
9.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
10.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smugeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Solid Freeform Fabrication Symposium
, University of Texas, Austin, TX, pp.
125
131
.
11.
Lewis
,
G. K.
, and
Schlienger
,
E.
,
2000
, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
,
21
(
4
), pp.
417
423
.
12.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.
13.
Cormier
,
D.
,
Harrysson
,
O.
, and
West
,
H.
,
2004
, “
Characterization of H13 Steel Produced via Electron Beam Melting
,”
Rapid Prototyping J.
,
10
(
1
), pp.
35
41
.
14.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
,
2008
, “
Cellular Ti–6Al–4V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
15.
Kelbassa
,
I.
,
Wohlers
,
T.
, and
Caffrey
,
T.
,
2012
, “
Quo Vadis, Laser Additive Manufacturing
?”
J. Laser Appl.
,
24
(
5
), p.
050101
.
16.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
17.
Zhang
,
H.
,
Xu
,
J.
, and
Wang
,
G.
,
2002
, “
Fundamental Study on Plasma Deposition Manufacturing
,”
Surf. Coat. Technol.
,
171
(
1
), pp.
112
118
.
18.
Karunakaran
,
K. P.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2010
, “
Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
26
(
5
), pp.
490
499
.
19.
Sreenathbabu
,
A.
,
Karunakaran
,
K. P.
, and
Amarnath
,
C.
,
2005
, “
Statistical Process Design for Hybrid Adaptive Layer Manufacturing
,”
Rapid Prototyping J.
,
11
(
4
), pp.
235
248
.
20.
Clark
,
D.
,
Bache
,
M. R.
, and
Whittaker
,
M. T.
,
2008
, “
Shaped Metal Deposition of a Nickel Alloy for Aero Engine Applications
,”
J. Mater. Process. Technol.
,
203
(
1
), pp.
439
448
.
21.
Price
,
S.
,
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061019
.
22.
Palani
,
P. K.
, and
Murugan
,
N.
,
2006
, “
Development of Mathematical Models for Prediction of Weld Bead Geometry in Cladding by Flux Cored Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
30
(
7–8
), pp.
669
676
.
23.
Tarng
,
Y. S.
, and
Yang
,
W. H.
,
1998
, “
Optimisation of the Weld Bead Geometry in Gas Tungsten Arc Welding by the Taguchi Method
,”
Int. J. Adv. Manuf. Technol.
,
14
(
8
), pp.
549
554
.
24.
Benyounis
,
K. Y.
, and
Olabi
,
A. G.
,
2008
, “
Optimization of Different Welding Processes Using Statistical and Numerical Approaches: A Reference Guide
,”
Adv. Eng. Software
,
39
(
6
), pp.
483
496
.
25.
Suryakumar
,
S.
,
Karunakaran
,
K. P.
,
Bernard
,
A.
,
Chandrasekhar
,
U.
,
Raghavender
,
N.
, and
Sharma
,
D.
,
2011
, “
Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing
,”
Comput. Aided Des.
,
43
(
4
), pp.
331
344
.
26.
Cao
,
Y.
,
Zhu
,
S.
,
Liang
,
X.
, and
Wang
,
W.
,
2011
, “
Overlapping Model of Beads and Curve Fitting of Bead Section for Rapid Manufacturing by Robotic MAG Welding Process
,”
Rob. Comput. Integr. Manuf.
,
27
(
3
), pp.
641
645
.
27.
Jeng
,
J. Y.
, and
Lin
,
M. C.
,
2001
, “
Mold Fabrication and Modification Using Hybrid Processes of Selective Laser Cladding and Milling
,”
J. Mater. Process. Technol.
,
110
(
1
), pp.
98
103
.
28.
Li
,
X.
, and
Zhang
,
Y.
,
2014
, “
Predictive Control for Manual Plasma Arc Pipe Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041017
.
29.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
30.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4
), pp.
397
414
.
31.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
32.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
33.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
34.
Wang
,
D.
, and
Dai
,
J.
,
2007
, “
Theoretical Foundation of Metamorphic Mechanism and its Synthesis
,”
Chin. J. Mech. Eng.
,
43
(
8
), pp.
32
42
.
35.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
36.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072303
.
37.
Sellars
,
C. M.
,
1990
, “
Modelling Microstructural Development During Hot Rolling
,”
Mater. Sci. Technol.
,
6
(
11
), pp.
1072
1081
.
38.
Chen
,
F. S.
, and
Wang
,
K. L.
,
1999
, “
The Kinetics and Mechanism of Multi-Component Diffusion on AISI 1045 Steel
,”
Surf. Coat. Technol.
,
115
(
2
), pp.
239
248
.
39.
ASTM Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for ASTM A29/A29M-04.
You do not currently have access to this content.