An investigation on the effect of two alternative friction stir welding (FSW) tool designs, namely, Bobbin tool and DeltaN tool, on the temperature profile, residual stress (RS), and distortion fields developing during FSW process is presented. The study is based on the semi-analytical calculation of the total heat generated during FSW. Subsequently, the calculated heat energy is applied as thermal load in a three-dimensional finite element (FE) thermo-mechanical model for the calculation of temperature history, RSs, and distortions. The overall methodology is validated through the comparison of the numerical results to respective experimental temperature measurements and distortions observations.

References

1.
Thomas
,
M. W.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Church
,
M. G.
,
Templesmith
,
P.
, and
Dawes
,
C. J.
,
1991
, International Patent PCT/GB92/02203 and GB Patent 9125978.9.
2.
Rai
,
R.
,
De
,
A.
,
Bhadeshia
,
H. K. D. H.
, and
DebRoy
,
T.
,
2011
, “
Review: Friction Stir Welding Tools
,”
Sci. Technol. Weld. Joining
,
16
(
4
), pp.
325
342
.10.1179/1362171811Y.0000000023
4.
Zhang
,
Y. N.
,
Cao
,
X.
,
Larose
,
S.
, and
Wanjara
,
P.
,
2012
, “
Review of Tools for Friction Stir Welding and Processing
,”
Can. Metall. Q.
,
51
(
3
), pp.
250
261
.10.1179/1879139512Y.0000000015
5.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.10.1115/1.1537741
6.
Lockwood
,
W. D.
, and
Reynolds
,
A. P.
,
2003
, “
Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior
,”
Mater. Sci. Eng. A
,
339
(
1–2
), pp.
35
42
.10.1016/S0921-5093(02)00116-8
7.
Santos
,
T. F. A.
,
Idagawa
,
H. S.
, and
Ramirez
,
A. J.
,
2014
, “
Thermal History in UNS S32205 Duplex Stainless Steel Friction Stir Welds
,”
Sci. Technol. Weld. Joining
,
19
(
2
), pp.
150
156
.10.1179/1362171813Y.0000000174
8.
Perivilli
,
S.
,
Peddieson
,
J.
, and
Cui
,
J.
,
2009
, “
Friction Stir Welding Heat Transfer: Quasisteady Modeling and Its Validation
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011007
.10.1115/1.3046138
9.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.10.1115/1.1537741
10.
Mukherjee
,
S.
, and
Ghosh
,
A. K.
,
2008
, “
Simulation of a New Solid State Joining Process Using Single-Shoulder Two-Pin Tool
,”
ASME J. Manuf. Sci. Eng.
130
(
4
), p.
041015
.10.1115/1.2953071
11.
McCune
,
R. W.
,
Murphy
,
A.
,
Price
,
M.
, and
Butterfield
,
J.
,
2012
, “
The Influence of Friction Stir Welding Process Idealization on Residual Stress and Distortion Predictions for Future Airframe Assembly Simulations
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031011
.10.1115/1.4006554
12.
Fehrenbacher
,
A.
,
Smith
,
C. B.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Pfefferkorn
,
F. E.
, and
Zinn
,
M. R.
,
2014
, “
Combined Temperature and Force Control for Robotic Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021007
.10.1115/1.4025912
13.
Fehrenbacher
,
A.
,
Schmale
,
J. R.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021009
.10.1115/1.4026115
14.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2010
, “
Investigation of Friction Stir Welding Process With Emphasis on Calculation of Heat Generated Due to Material Stirring
,”
Sci. Technol. Weld. Joining
,
15
(
2
), pp.
177
184
.10.1179/136217109X12537145658779
15.
Nandan
,
R.
,
Debroy
,
T.
, and
Bhadeshia
,
H.
,
2008
, “
Recent Advances in Friction-Stir Welding–Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.10.1016/j.pmatsci.2008.05.001
16.
Nandan
,
R.
,
Roy
,
G. G.
,
Lienert
,
T. J.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.10.1016/j.actamat.2006.09.009
17.
Schmidt
,
H.
,
Hattel
,
J.
, and
Wert
,
J.
,
2004
, “
An Analytical Model for the Heat Generation in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
1
), pp.
143
157
.10.1088/0965-0393/12/1/013
18.
Ravichandran
,
G.
,
Rosakis
,
A. J.
,
Hodowany
,
J.
, and
Rosakis
,
P.
,
2002
, “
On the Conversion of Plastic Work Into Heat During High-Strain-Rate Deformation
,”
AIP Conf. Proc.
,
620
(
1
), pp.
557
562
.10.1063/1.1483600
19.
European Research Project 'COst Effective INtegral Metallic Structures', Contract No. AST5-CT-030825,
2006.
20.
Moraitis
,
G.
,
2009
, “
Thermomechanical Simulation of Friction Stir and Laser Beam Innovative Welding Processes
,” Ph.D. thesis, University of Patras, Greece.
21.
Khandkar
,
M. Z. H.
,
Khan
,
J. A.
,
Reynolds
,
A. P.
, and
Sutton
,
M. A.
,
2006
, “
Predicting Residual Thermal Stresses in Friction Stir Welded Metals
,”
J. Mater. Process. Technol.
,
174
(
1–3
), pp.
195
203
.10.1016/j.jmatprotec.2005.12.013
22.
Yan
,
D.-Y.
,
Wu
,
A.-P.
,
Silvanus
,
J.
, and
Shi
,
Q.-Y.
,
2011
, “
Predicting Residual Distortion of Aluminum Alloy Stiffened Sheet After Friction Stir Welding by Numerical Simulation
,”
Mater. Des.
,
32
(
4
), pp.
2284
2291
.10.1016/j.matdes.2010.11.032
You do not currently have access to this content.