An investigation on the effect of two alternative friction stir welding (FSW) tool designs, namely, Bobbin tool and DeltaN tool, on the temperature profile, residual stress (RS), and distortion fields developing during FSW process is presented. The study is based on the semi-analytical calculation of the total heat generated during FSW. Subsequently, the calculated heat energy is applied as thermal load in a three-dimensional finite element (FE) thermo-mechanical model for the calculation of temperature history, RSs, and distortions. The overall methodology is validated through the comparison of the numerical results to respective experimental temperature measurements and distortions observations.
Issue Section:
Joining
References
1.
Thomas
, M. W.
, Nicholas
, E. D.
, Needham
, J. C.
, Church
, M. G.
, Templesmith
, P.
, and Dawes
, C. J.
, 1991
, International Patent PCT/GB92/02203 and GB Patent 9125978.9.2.
Rai
, R.
, De
, A.
, Bhadeshia
, H. K. D. H.
, and DebRoy
, T.
, 2011
, “Review: Friction Stir Welding Tools
,” Sci. Technol. Weld. Joining
, 16
(4
), pp. 325
–342
.10.1179/1362171811Y.00000000233.
Airbus Group
, 2014
, ‘DeltaN FS® System for Friction-Stir Welding
,' available at http://www.technology-licensing.com/etl/int/en/What-we-offer/Technologies-for-licensing/Metallics-and-related-manufacturing-technologies/DeltaN-system-for-friction-stir-welding.html, last accessed Sept. 22.
4.
Zhang
, Y. N.
, Cao
, X.
, Larose
, S.
, and Wanjara
, P.
, 2012
, “Review of Tools for Friction Stir Welding and Processing
,” Can. Metall. Q.
, 51
(3
), pp. 250
–261
.10.1179/1879139512Y.00000000155.
Chao
, Y. J.
, Qi
, X.
, and Tang
, W.
, 2003
, “Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,” ASME J. Manuf. Sci. Eng.
, 125
(1
), pp. 138
–145
.10.1115/1.15377416.
Lockwood
, W. D.
, and Reynolds
, A. P.
, 2003
, “Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior
,” Mater. Sci. Eng. A
, 339
(1–2
), pp. 35
–42
.10.1016/S0921-5093(02)00116-87.
Santos
, T. F. A.
, Idagawa
, H. S.
, and Ramirez
, A. J.
, 2014
, “Thermal History in UNS S32205 Duplex Stainless Steel Friction Stir Welds
,” Sci. Technol. Weld. Joining
, 19
(2
), pp. 150
–156
.10.1179/1362171813Y.00000001748.
Perivilli
, S.
, Peddieson
, J.
, and Cui
, J.
, 2009
, “Friction Stir Welding Heat Transfer: Quasisteady Modeling and Its Validation
,” ASME J. Manuf. Sci. Eng.
, 131
(1
), p. 011007
.10.1115/1.30461389.
Chao
, Y. J.
, Qi
, X.
, and Tang
, W.
, 2003
, “Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,” ASME J. Manuf. Sci. Eng.
, 125
(1
), pp. 138
–145
.10.1115/1.153774110.
Mukherjee
, S.
, and Ghosh
, A. K.
, 2008
, “Simulation of a New Solid State Joining Process Using Single-Shoulder Two-Pin Tool
,” ASME J. Manuf. Sci. Eng.
130
(4
), p. 041015
.10.1115/1.295307111.
McCune
, R. W.
, Murphy
, A.
, Price
, M.
, and Butterfield
, J.
, 2012
, “The Influence of Friction Stir Welding Process Idealization on Residual Stress and Distortion Predictions for Future Airframe Assembly Simulations
,” ASME J. Manuf. Sci. Eng.
, 134
(3
), p. 031011
.10.1115/1.400655412.
Fehrenbacher
, A.
, Smith
, C. B.
, Duffie
, N. A.
, Ferrier
, N. J.
, Pfefferkorn
, F. E.
, and Zinn
, M. R.
, 2014
, “Combined Temperature and Force Control for Robotic Friction Stir Welding
,” ASME J. Manuf. Sci. Eng.
, 136
(2
), p. 021007
.10.1115/1.402591213.
Fehrenbacher
, A.
, Schmale
, J. R.
, Zinn
, M. R.
, and Pfefferkorn
, F. E.
, 2014
, “Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,” ASME J. Manuf. Sci. Eng.
, 136
(2
), p. 021009
.10.1115/1.402611514.
Moraitis
, G. A.
, and Labeas
, G. N.
, 2010
, “Investigation of Friction Stir Welding Process With Emphasis on Calculation of Heat Generated Due to Material Stirring
,” Sci. Technol. Weld. Joining
, 15
(2
), pp. 177
–184
.10.1179/136217109X1253714565877915.
Nandan
, R.
, Debroy
, T.
, and Bhadeshia
, H.
, 2008
, “Recent Advances in Friction-Stir Welding–Process, Weldment Structure and Properties
,” Prog. Mater. Sci.
, 53
(6
), pp. 980
–1023
.10.1016/j.pmatsci.2008.05.00116.
Nandan
, R.
, Roy
, G. G.
, Lienert
, T. J.
, and Debroy
, T.
, 2007
, “Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,” Acta Mater.
, 55
(3
), pp. 883
–895
.10.1016/j.actamat.2006.09.00917.
Schmidt
, H.
, Hattel
, J.
, and Wert
, J.
, 2004
, “An Analytical Model for the Heat Generation in Friction Stir Welding
,” Modell. Simul. Mater. Sci. Eng.
, 12
(1
), pp. 143
–157
.10.1088/0965-0393/12/1/01318.
Ravichandran
, G.
, Rosakis
, A. J.
, Hodowany
, J.
, and Rosakis
, P.
, 2002
, “On the Conversion of Plastic Work Into Heat During High-Strain-Rate Deformation
,” AIP Conf. Proc.
, 620
(1
), pp. 557
–562
.10.1063/1.148360019.
European Research Project 'COst Effective INtegral Metallic Structures', Contract No. AST5-CT-030825,
2006.20.
Moraitis
, G.
, 2009
, “Thermomechanical Simulation of Friction Stir and Laser Beam Innovative Welding Processes
,” Ph.D. thesis, University of Patras, Greece.21.
Khandkar
, M. Z. H.
, Khan
, J. A.
, Reynolds
, A. P.
, and Sutton
, M. A.
, 2006
, “Predicting Residual Thermal Stresses in Friction Stir Welded Metals
,” J. Mater. Process. Technol.
, 174
(1–3
), pp. 195
–203
.10.1016/j.jmatprotec.2005.12.01322.
Yan
, D.-Y.
, Wu
, A.-P.
, Silvanus
, J.
, and Shi
, Q.-Y.
, 2011
, “Predicting Residual Distortion of Aluminum Alloy Stiffened Sheet After Friction Stir Welding by Numerical Simulation
,” Mater. Des.
, 32
(4
), pp. 2284
–2291
.10.1016/j.matdes.2010.11.032Copyright © 2015 by ASME
You do not currently have access to this content.