This article investigates the effect of fiber orientation on forming and failure behaviors of a preconsolidated woven self-reinforced polypropylene (SRPP) composite during the stamp-forming process. Specimens with different aspect ratios were employed to study their formability during forming through a hemispherical punch in an open die configuration. The strain evolution in specimens was captured using a real-time strain measurement system (the aramis). A forming limit diagram (FLD), inspired from metal forming, was constructed to investigate the failure onset in the woven composite. The FLD revealed dominant failure mechanisms in [0 deg,90 deg] specimens were yarn splitting and fiber fracture as depicted by optical microscopy. A modified FLD was proposed to investigate failure mechanisms in [45 deg,−45 deg] samples. It was shown that delamination and intralaminar shear are the main causes of failure in this set of specimens. The outcomes of this study suggest that by changing forming parameters, such as fiber orientation, boundary condition, and aspect ratio, the formability of a preconsolidated SRPP can be improved. These results show the possibility of producing cost-effective, flawless, and fully recyclable products from consolidated woven composites. The proposed criterion can accurately predict failure in a woven composite by considering the combined strain interactions. This is reflected in the implementation of induced deformation modes and strain history into the failure criterion, making it a practical measure for rapid manufacturing techniques, such as stamping. The novel path-dependent failure criterion, introduced in this study, attempts to fill the gap for a reliable and accurate failure measure for woven composites.

References

1.
European Commission of Energy
,
2014
, “
Progress Towards Achieving the KYOTO and UE 2020 Objectives
,” Technical Report No. 1-2014-689.
2.
Australian Government, Climate Change Authority
,
2014
, “
Reducing Australia's Greenhouse Gas Emissions-Target and Progressive Review
.”
3.
Unites States Environmental Protection Energy
,
2015
, “
Inventory of U.S. Greenhouse Gas Emissions and Sinks
,” Report No. EPA 430-R-15-004.
4.
National Research Council
,
2010
,
Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles
,
National Academies Press
,
Washington, DC
, Chap. 2.
5.
EU-Directive
,
2000
, “
Directive 2000/2053/EC
,” http://eur-lex.europa.eu
6.
Pıhtılı
,
H.
, and
Tosun
,
N.
,
2002
, “
Investigation of the Wear Behaviour of a Glass-Fibre-Reinforced Composite and Plain Polyester Resin
,”
Compos. Sci. Technol.
,
62
(
3
), pp.
367
370
.10.1016/S0266-3538(01)00196-8
7.
Radvan
,
B.
, and
Till
,
A.
,
1987
, “
Fibre Reinforced Composite Plastics Material
,” U.S. Patent No. 4690860.
8.
9.
Abot
,
J. L.
,
Gabbai
,
R. D.
, and
Harsley
,
K.
,
2001
, “
Effect of Woven Fabric Architecture on Interlaminar Mechanical Response of Composite Materials: An Experimental Study
,”
J. Reinf. Plast. Compos.
,
30
(
24
), pp.
2003
2014
.10.1177/0731684411431118
10.
Fokker Co.
, “
New Evolution: Progress in Thermoplastic Composites
,” http://www.fokker.com
11.
Biron
,
M.
,
2007
,
Thermoplastics and Thermoplastic Composites
,
Elsevier Publication
,
New York
, Chap. 6.
12.
Ashby
,
F. A.
, and
Jones
,
D. R. H.
,
2006
,
Engineering Materials 2: An Introduction to Microstructure, Processing and Design
, 3rd ed.,
Pergamon Press
,
New York
, Chap. 28.
13.
Tan
,
H.
, and
Yao
,
Y. L.
,
2013
, “
Laser Joining of Continuous Glass Fiber Composite Preforms
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011010
.10.1115/1.4023270
14.
Mosse
,
L.
,
Cantwell
,
W. J.
,
Cardew-Hall
,
M. J.
,
Compston
,
P.
, and
Kalyanasundaram
,
S.
,
2005
, “
The Effect of Process Temperature on the Formability of Fibre-Metal Laminates
,”
Composites, Part A
,
36
(
8
), pp.
1158
1166
.10.1016/j.compositesa.2005.01.009
15.
Mosse
,
L.
,
Cantwell
,
W. J.
,
Cardew-Hall
,
M. J.
,
Compston
,
P.
, and
Kalyanasundaram
,
S.
,
2005
, “
A Study of the Effect of Process Variables on the Stamp Forming of Rectangular Cups Using Fibre-Metal Laminate Systems
,”
J. Adv. Mater.
,
6–8
, pp.
649
656
.10.4028/www.scientific.net/AMR.6-8.649
16.
Mosse
,
L.
,
Cantwell
,
W. J.
,
Cardew-Hall
,
M. J.
,
Compston
,
P.
, and
Kalyanasundaram
,
S.
,
2006
, “
The Development of a Finite Element Model for Simulating the Stamp Forming of Fibre-Metal Laminates
,”
Compos. Struct.
,
75
(
1–4
), pp.
298
304
.10.1016/j.compstruct.2006.04.009
17.
Mosse
,
L.
,
Cantwell
,
W. J.
,
Cardew-Hall
,
M. J.
,
Compston
,
P.
, and
Kalyanasundaram
,
S.
,
2006
, “
Stamp Forming of Polypropylene Based Fibre-Metal Laminates: The Effect of Process Variables on Formability
,”
J. Mater. Process. Technol.
,
172
(
2
), pp.
163
168
.10.1016/j.jmatprotec.2005.09.002
18.
Sexton
,
A.
,
Cantwell
,
W. J.
, and
Kalyanasundaram
,
S.
,
2012
, “
Stretch Forming Studies on a Fibre Metal Laminate Based on a Self-Reinforcing Polypropylene Composite
,”
Compos. Struct.
,
94
(
2
), pp.
431
437
.10.1016/j.compstruct.2011.08.004
19.
Zanjani
,
N. A.
,
Sexton
,
A.
, and
Kalyanasundaram
,
S.
,
2015
, “
Induced Forming Modes in a Pre-Consolidated Woven Polypropylene Composite During Stretch Forming Process at Room Temperature. I—Experimental Studies
,”
Composites, Part A
,
68
, pp.
251
263
.10.1016/j.compositesa.2014.09.023
20.
Davey
,
S.
,
Das
,
R.
,
Cantwell
,
W. J.
, and
Kalyanasundaram
,
S.
,
2013
, “
Forming Studies of Carbon Fibre Composite Sheets in Dome Forming Processes
,”
Compos. Struct.
,
97
, pp.
310
316
.10.1016/j.compstruct.2012.10.026
21.
Romhány
,
G.
,
Bárány
,
T.
,
Czigány
,
T.
, and
Kocsis
,
J. K.
,
2007
, “
Fracture and Failure Behavior of Fabric-Reinforced All-Poly(Propylene) Composite (Curv®)
,”
Polym. Adv. Technol.
,
18
(
2
), pp.
90
96
.10.1002/pat.806
22.
Li
,
S.
,
He
,
J.
,
Xia
,
C.
,
Zeng
,
D.
, and
Hou
,
B.
,
2014
, “
Bifurcation Analysis of Forming Limits for an Orthotropic Sheet Metal
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051005
.10.1115/1.4027757
23.
He
,
J.
,
Xia
,
C.
,
Li
,
S.
, and
Zeng
,
D.
,
2013
, “
M–K Analysis of Forming Limit Diagram Under Stretch-Bending
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041017
.10.1115/1.4024536
24.
Hinton
,
M. J.
,
Kaddour
,
A. S.
, and
Soden
,
P. D.
,
2004
,
Failure Criteria in Fibre-Reinforced-Polymer Composites
,
Elsevier Publications
,
Oxford, UK
, Chap. 6.1.
25.
Kaddour
,
A. S.
,
Hinton
,
M. J.
,
Smith
,
P. A.
, and
Li
,
S.
,
2013
, “
A Comparison Between the Predictive Capability of Matrix Cracking, Damage and Failure Criteria for Fibre Reinforced Composite Laminates: Part A of the Third World-Wide Failure Exercise
,”
J. Compos. Mater.
,
47
(
20–21
), pp.
2749
2779
.10.1177/0021998313499476
26.
Propex Fabrics Co.
, “
Curv—What Will You Make of It
,” http://www.curvonline.com
27.
Gom Co.
, “
Gom
,” http://www.gom.com
28.
Launay
,
J.
,
Hivet
,
G.
,
Duong
,
A. V.
, and
Boisse
,
P.
,
2008
, “
Experimental Analysis of the Influence of Tensions on in Plane Shear Behaviour of Woven Composite Reinforcements
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
506
515
.10.1016/j.compscitech.2007.06.021
29.
Dridi
,
S.
,
Dogui
,
A.
, and
Boisse
,
P.
,
2010
, “
Finite Element Analysis of Bias Extension Test Using an Orthotropic Hyperelastic Continuum Model for Woven Fabric
,”
J. Text. Inst.
,
102
(
9
), pp.
781
789
.10.1080/00405000.2010.522048
30.
Selezneva
,
M.
,
Montesano
,
J.
,
Fawaz
,
Z.
,
Behdinan
,
K.
, and
Poon
,
C.
,
2011
, “
Microscale Experimental Investigation of Failure Mechanisms in Off-Axis Woven Laminates at Elevated Temperatures
,”
Composites, Part A
,
42
(
11
), pp.
1756
1763
.10.1016/j.compositesa.2011.07.031
31.
Hosseinzadeh
,
R.
,
Shokrieh
,
M. M.
, and
Lessard
,
L. B.
,
2005
, “
Parametric Study of Automotive Composite Bumper Beams Subjected to Low-Velocity Impacts
,”
Compos. Struct.
,
68
(
4
), pp.
419
427
.10.1016/j.compstruct.2004.04.008
You do not currently have access to this content.