To reduce combat casualties, military helmets are designed to provide protection against projectiles. Modern combat helmets are constructed of relatively lightweight composite materials that provide ballistic protection to the soldier. The manufacture of most composite helmets is labor intensive and involves the manual application and smoothing of individual layers of reinforcement to a concave mold surface. The recently developed double diaphragm deep drawing thermoforming process turns as-purchased, flat-form composite materials into structurally efficient three-dimensional shapes. Using this process, prototype shells have been produced and subsequently tested structurally. The success of the outcome has been greatly assisted through the use of specialized virtual prototyping techniques to provide insight into the thermoforming process of the shells and subsequently their structural performance by accounting for the actual fiber orientations of those finished shells.

References

1.
Kulkarni
,
S. G.
,
Gao
,
X.-L.
,
Horner
,
S. E.
,
Zheng
,
J. Q.
, and
David
,
N. V.
,
2013
, “
Ballistic Helmets—Their Design, Materials, and Performance Against Traumatic Brain Injury
,”
Compos. Struct.
,
101
, pp.
313
331
.
2.
Crye Airframe Helmet
, “
The AirFrame™ Ballistic Helmet
,” Last accessed Nov. 19,
2014
, http://www.cryeprecision.com/P-HLMM0106LG0/Airframe%E2%84%A2-Helmet
3.
Ops-Core Helmet
, “
Sentry Helmet (XP
),” Last accessed Nov. 19,
2014
, http://www.ops-core.com/Sentry_Helmet_XP__P97C6.cfm
4.
LAND 149 Lightweight Ballistic Armour
,
2005
, Department of Defence Capability and Technology Demonstrator (CTD) Program, DSTO, Port Melbourne, VIC Australia.
5.
Crouch
,
I. G.
,
2013
, “
NG Combat Helmets
,”
DMTC Annual Conference
,
Canberra, Australia
.
6.
Prevorsek
,
D. C.
,
Harpell
,
G. A.
,
Kwon
,
Y. D.
,
Li
,
H. L.
, and
Young
,
S.
,
1988
, “
Ballistic Armour From Extended Polyethylene Chain Fibres
,”
33rd SAMPE Symposium
,
Anaheim, CA
, Mar. 7–10, Vol.
33
, pp.
1685
1696
.
7.
GL-PD-09-04
,
2013
,
Purchase Description (PD) for Enhanced Combat Helmet, Revision K
,
United States Marine Corp, United States Department of Defense
,
Washington, DC
.
8.
Honeywell
, “
Descriptions of Honeywell Spectra Shield Products
,” Last accessed Nov. 19,
2014
, http://www.honeywell-advancedfibersandcomposites.com/product/tag/composite-materials/
9.
Honeywell
, “
Descriptions of Honeywell Products for Body Armour Applications
,” Last accessed Nov. 19,
2014
, http://www.bodyarmornews.com/tag/honeywell
10.
DSM Dyneema
, “
Descriptions of Dyneema Products
,” Last accessed Nov. 19,
2014
, http://www.dyneema.com/apac/
11.
DuPont Tensylon
, “
Descriptions of Armour Protection Systems
,” Last accessed Nov. 19,
2014
, http://www.dupont.com/products-and-services/personal-protective-equipment/vehicle-armor/products/dupont-tensylon.html
12.
Lebrun
,
G.
,
Bureau
,
M. N.
, and
Denault
,
J.
,
2003
, “
Evaluation of Bias-Extension and Picture-Frame Test Methods for the Measurement of Intraply Shear Properties of PP/Glass Commingled Fabrics
,”
Compos. Struct.
,
61
(
4
), pp.
341
352
.
13.
Cartwright
,
B. K.
,
de Luca
,
P.
,
Wang
,
J.
,
Stellbrink
,
K.
, and
Paton
,
R.
,
1999
, “
Some Proposed Experimental Tests for Use in Finite Element Simulation of Composite Forming
,”
12th International Conference on Composite Materials (ICCM-12)
,
Paris, France
, July 5–9, Paper 582.
14.
ESI
,
2013
,
Composite Solution Suite User Manual
,
ESI Group
,
Paris, France
.
15.
ESI
,
2013
,
Virtual Performance Solution User Manual
,
ESI Group
,
Paris, France
.
16.
Zhong
,
Z.-H.
,
1993
,
Finite Element Procedures for Contact-Impact Problems
,
Oxford University Press
,
Oxford, UK
.
17.
Hiermaier
,
S.
,
2008
,
Structures Under Crash and Impact: Continuum Mechanics, Discretization and Experimental Characterization
,
Springer
,
New York
.
18.
Wu
,
S.
, and
Gu
,
L.
,
2012
,
Introduction to the Explicit Finite Element for Nonlinear Transient Dynamics
,
Wiley
,
Hoboken, NJ
.
19.
De Luca
,
P.
,
Pickett
,
A. K.
,
Queckborner
,
T.
, and
Johnson
,
A. F.
,
1995
, “
Development Validation and First Industrial Numerical Results of a Finite Element Code to Simulate the Thermoforming Process
,”
4th International Conference on Automated Composites (ICAC’95)
,
Nottingham, UK
, Sept. 6–7, Vol. I, pp. 183–193.
20.
Pickett
,
A. K.
,
Queckborner
,
T.
,
de Luca
,
P.
, and
Haug
,
E.
,
1995
, “
An Explicit Finite Element Solution for the Forming Prediction of Continuous Fibre-Reinforced Thermoplastic Sheets
,”
Compos. Manuf.
,
6
(
3–4
), pp.
237
244
.
21.
Pickett
,
A. K.
,
Cunningham
,
J. E.
,
Johnson
,
A. F.
,
Lefebure
,
P.
,
de Luca
,
P.
,
Mallon
,
P.
,
Sunderland
,
P.
,
O'Bradaigh
,
C.
,
Vodermayer
,
A. M.
, and
Werner
,
W.
,
1996
, “
Numerical Techniques for the Pre-Heating and Forming Simulation of Continuous Fibre Reinforced Thermoplastics
,”
17th SAMPE Europe Conference and Exhibit
,
Basel, Switzerland
, May 28–30, Vol.
17
, pp.
353
364
.
22.
Johnson
,
A. F.
, and
Pickett
,
A. K.
,
1996
, “
Numerical Simulation of the Forming Process in Long Fibre Reinforced Thermoplastic
,”
CADCOMP ‘96
,
Udine, Italy
, July 1–3, pp.
233
242
.
23.
de Luca
,
P.
,
Lefebure
,
P.
, and
Pickett
,
A. K.
,
1998
, “
Numerical and Experimental Investigation of Some Press Forming Parameters of Two Fibre Reinforced Thermoplastics: APC2-AS4 and PEI-CETEX
,”
Composites, Part A
,
29
(
1–2
), pp.
101
110
.
24.
Pickett
,
A. K.
,
2002
, “
Review of Finite Element Methods Applied to Manufacturing and Failure Prediction in Composite Structures
,”
Appl. Compos. Mater.
,
9
(
1
), pp.
43
58
.
25.
Creech
,
G.
,
Pickett
,
A. K.
, and
Greve
,
L.
,
2003
, “
Finite Element Modelling of Non-Crimp Fabrics for Draping Simulation
,”
6th International ESAFORM Conference on Material Forming
,
Salerno, Italy
, Apr. 28–30, pp.
863
866
.
26.
Cartwright
,
B.
,
Chhor
,
A.
,
Howlett
,
S.
,
McGuckin
,
D.
,
Paton
,
R.
,
Ye
,
L.
, and
Yu
,
X.
,
2003
, “
Industrially Robust Modelling of Viscous Friction Effects in Composites
,” EuroPAM, Mainz, Germany, Oct. 16–17.
27.
Yu
,
X.
,
Ye
,
L.
,
Mai
,
Y.-W.
,
Cartwright
,
B.
,
McGuckin
,
D.
, and
Paton
,
R.
,
2005
, “
Finite Element Simulations of the Doublediaphragm Forming Process: Comparisons With Experimental Trials
,”
Revue Europeenne des Elements Finis
,
14
(
6–7
), pp.
633
651
.
28.
Pickett
,
A. K.
,
Creech
,
G.
, and
de Luca
,
P.
,
2005
, “
Simplified and Advanced Simulation Methods for Prediction of Fabric Draping
,”
Revue Europeenne des Elements Finis
,
14
(
6–7
), pp.
677
691
.
29.
Brite-Euram
,
1992–1996
, “
Industrial Press Forming of Continuous Fibre-Reinforced Thermoplastic Sheets and the Development of Numerical Simulation Tools
,” Brite-Euram Project, Contract No. BE-5092.
30.
O'Bradaigh
,
C. M.
,
McGuinness
,
G. B.
, and
Pipes
,
R. B.
,
1993
, “
Numerical Analysis of Stresses and Deformations in Composite Materials Sheet Forming: Central Indentation of a Circular Sheet
,”
Compos. Manuf.
,
4
(
2
), pp.
67
83
.
31.
Boise
,
P.
,
Borr
,
M.
,
Buer
,
K.
, and
Cherouat
,
A.
,
1997
, “
Finite Element Simulations of Textile Composite Forming Including the Biaxial Fabric Behaviour
,”
Composites, Part B
,
28
(
4
), pp.
453
464
.
32.
El Khaldi
,
F.
,
Ni
,
R.
,
Culiere
,
P.
,
Ullrich
,
P.
, and
Terrez Aboitiz
,
C.
,
2010
, “
Recent Integration Achievements in Virtual Prototyping for the Automotive Industry
,”
FISITA World Automotive Congress
,
Budapest, Hungary
, May 30–June 4, Paper No. F2010-C-206.
33.
Middendorf
,
P.
,
Van den Broucke
,
B.
,
Lomov
,
S. V.
,
Verpoest
,
I.
, and
De Luca
,
P.
,
2007
, “
Integrated Simulation Approach for Fabric Textile Composites
,”
SAMPE Europe Technical Conference, SETEC 2007
,
Madrid, Spain
, Sept. 6–7, pp.
213
222
.
34.
Walsh
,
S. M.
,
Scott
,
B.
,
Spagnuolo
,
D.
, and
Wolbert
,
J.
,
2008
, “
The Development of UHMWPE Prototype Helmets for Improved Ballistic Mass Efficiency
,”
53rd SAMPE Symposium
,
Long Beach, CA
, May 18–22, Vol.
53
.
35.
Fischer
,
H.
,
2014
,
A Guide to U.S. Military Casualty Statistics, Operation Inherent Resolve, Operation New Dawn, Operation Iraqi Freedom, and Operation Enduring Freedom
,
U.S. Congressional Research Service
,
Washington, DC
.
36.
Choi
,
H.-Y.
,
2001
, “
Numerical Human Head Model for Traumatic Injury Assessment
,”
KSME Int. J.
,
15
(
7
), pp.
995
1001
.
37.
Haug
,
E.
,
Choi
,
H.-Y.
,
Robin
,
S.
, and
Beaugonin
,
M.
,
2004
, “
Human Models for Crash and Impact Simulation
,”
Handbook of Numerical Analysis
(Computational Models for the Human Body, Vol.
12)
,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.