Processing of wrought magnesium alloy sheet by severe plastic deformation (SPD) for improving its formability is attractive so as to encourage the wider applications of the alloy. In this study, SPD by means of groove pressing (GP) was carried out on AZ31B-O magnesium sheet at different deformation paths and temperatures in order to investigate its effects on microstructure, textures, and mechanical properties. GP using an orthogonal pressing at every cycle and at a progressively decreasing temperature was found to be effectively for manufacturing fine-grained microstructures with an average grain diameter of 1.9 μm. The final microstructures were homogenous in both the transverse direction (TD) and rolling direction (RD) and consisting of fine grains of 0.6–1 μm with a small fraction of coarser grains of 3–5 μm. The increase in yield stress (YS), ultimate tensile strength (UTS), and tensile elongation after annealing was 12%, −2.9%, and 25.6%, respectively, in the RD. A good balance between fine-grained microstructure and ductility was obtained by the pressing at a constant processing temperature of 473 K. In this pressing path, average grain diameter was 3.8 μm and the increased in YS, UTS, and tensile elongation before annealing was 21.9%, 9.1%, and 19.8%, respectively, in the RD. It was shown that the texture modification combined with fine-grained microstructure contributed to the overall improvement in ductility.

References

1.
Internation Magnesium Association
,” last accessed Sept. 17,
2014
, http://www.intlmag.org/
2.
Avedesian
,
M. M.
, and
Baker
,
H.
,
1999
,
Magnesium and Magnesium Alloys
,
M.
Avedesian
, and
H.
Baker
, eds.,
ASM International
,
Materials Park, OH
.
3.
Kleiner
,
M.
,
Geiger
,
M.
, and
Klaus
,
A.
,
2003
, “
Manufacturing of Lightweight Components by Metal Forming
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
521
542
.10.1016/S0007-8506(07)60202-9
4.
James
,
M.
,
Kihiu
,
J. M.
,
Rading
,
G. O.
, and
Kimotho
,
J. K.
,
2011
, “
Use of Magnesium Alloys in Optimizing the Weight of Automobile: Current Trends and Opportunities
,”
Sustainable Research and Innovation Proceedings
, Vol.
3
.
5.
Prasad
,
Y. V. R. K.
, and
Rao
,
K. P.
,
2008
, “
Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability
,”
Mater. Sci. Eng., A
,
487
(
1–2
), pp.
316
327
.10.1016/j.msea.2007.10.038
6.
Von Mises
,
R.
, and
Angew
,
Z.
,
1928
, “
Mechanik der plastischen formaenderung von kristallen
,”
Math. Mech.
,
8
, pp.
161
165
.
7.
Koike
,
J.
,
Kobayashi
,
T.
,
Mukai
,
T.
,
Watanabe
,
H.
,
Suzuki
,
M.
,
Maruyama
,
K.
, and
Higashi
,
K.
,
2003
, “
The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys
,”
Acta Mater.
,
51
(
7
), pp.
2055
2065
.10.1016/S1359-6454(03)00005-3
8.
Miura
,
H.
,
Sakai
,
T.
,
Yang
,
X. Y.
,
Sun
,
Z. Y.
, and
Xing
,
J.
,
2008
, “
Grain Size and Texture Changes of Magnesium Alloy AZ31 During Multi-Directional Forging
,”
Trans. Nonferrous Met. Soc. China
,
18
(
Supp. 1
), pp.
200
204
.10.1016/S1003-6326(10)60202-6
9.
Iwanaga
,
K.
,
Tashiro
,
H.
,
Okamoto
,
H.
, and
Shimizu
,
K.
,
2004
, “
Improvement of Formability From Room Temperature to Warm Temperature in AZ-31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
155–156
(1), pp.
1313
1316
.10.1016/j.jmatprotec.2004.04.181
10.
Huang
,
X.
,
Suzuki
,
K.
,
Watazu
,
A.
,
Shigematsu
,
I.
, and
Saito
,
N.
,
2009
, “
Improvement of Formability of Mg–Al–Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling
,”
J. Alloys Compd.
,
470
(
1–2
), pp.
263
268
.10.1016/j.jallcom.2008.02.029
11.
Watanabe
,
H.
,
Mukai
,
T.
, and
Ishikawa
,
K.
,
2007
, “
Effect of Temperature of Differential Speed Rolling on Room Temperature Mechanical Properties and Texture in an AZ31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
644
647
.10.1016/j.jmatprotec.2006.08.010
12.
Al-Samman
,
T.
, and
Li
,
X.
,
2011
, “
Sheet Texture Modification in Magnesium-Based Alloys by Selective Rare Earth Alloying
,”
Mater. Sci. Eng., A
,
528
(
10–11
), pp.
3809
3822
.10.1016/j.msea.2011.01.080
13.
Hantzsche
,
K.
,
Bohlen
,
J.
,
Wendt
,
J.
,
Kainer
,
K. U.
,
Yi
,
S. B.
, and
Letzig
,
D.
,
2010
, “
Effect of Rare Earth Additions on Microstructure and Texture Development of Magnesium Alloy Sheets
,”
Scr. Mater.
,
63
(
7
), pp.
725
730
.10.1016/j.scriptamat.2009.12.033
14.
Mukai
,
T.
,
Yamanoi
,
M.
,
Watanabe
,
H.
, and
Higashi
,
K.
,
2001
, “
Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure
,”
Scr. Mater.
,
45
(
1
), pp.
89
94
.10.1016/S1359-6462(01)00996-4
15.
Xing
,
J.
,
Yang
,
X.
,
Miura
,
H.
, and
Sakai
,
T.
,
2008
, “
Mechanical Properties of Magnesium Alloy AZ31 After Severe Plastic Deformation
,”
Mater. Trans.
,
49
(
1
), pp.
69
75
.10.2320/matertrans.ME200705
16.
Shin
,
D. H.
,
Park
,
J.-J.
,
Kim
,
Y.-S.
, and
Park
,
K.-T.
,
2002
, “
Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum
,”
Mater. Sci. Eng., A
,
328
(
1–2
), pp.
98
103
.10.1016/S0921-5093(01)01665-3
17.
Huo
,
Q.
,
Yang
,
X.
,
Sun
,
H.
,
Li
,
B.
,
Qin
,
J.
,
Wang
,
J.
, and
Ma
,
J.
,
2013
, “
Enhancement of Tensile Ductility and Stretch Formability of AZ31 Magnesium Alloy Sheet Processed by Cross-Wavy Bending
,”
J. Alloys Compd.
,
581
(1), pp.
230
235
.10.1016/j.jallcom.2013.06.185
18.
Yang
,
Q.
, and
Ghosh
,
A. K.
,
2006
, “
Production of Ultrafine-Grain Microstructure in Mg Alloy by Alternate Biaxial Reverse Corrugation
,”
Acta Mater.
,
54
(
19
), pp.
5147
5158
.10.1016/j.actamat.2006.06.045
19.
Alkorta
,
J.
, and
Sevillano
,
J. G.
,
2004
, “
Optimal SPD Processing of Plates by Constrained Groove Pressing (CGP)
,”
Conference Nanomaterials by Severe Plastic Deformation
, pp.
491
497
.
20.
Khodabakhshi
,
F.
,
Abbaszadeh
,
M.
,
Eskandari
,
H.
, and
Mohebpour
,
S. R.
,
2013
, “
Application of CGP-Cross Route Process for Microstructure Refinement and Mechanical Properties Improvement in Steel Sheets
,”
J. Manuf. Processes
,
15
(
4
), pp.
533
541
.10.1016/j.jmapro.2013.08.001
21.
Mou
,
X.
,
Peng
,
K.
,
Zeng
,
J.
,
Shaw
,
L. L.
, and
Qian
,
K. W.
,
2011
, “
The Influence of the Equivalent Strain on the Microstructure and Hardness of H62 Brass Subjected to Multi-Cycle Constrained Groove Pressing
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
590
596
.10.1016/j.jmatprotec.2010.11.013
22.
Sunil
,
B. R.
,
Kumar
,
A. A.
,
Sampath Kumar
,
T. S.
, and
Chakkingal
,
U.
,
2013
, “
Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing
,”
Mater. Sci. Eng., C
,
33
(
3
), pp.
1607
1615
.10.1016/j.msec.2012.12.095
23.
Zrnik
,
J.
,
Kovarik
,
T.
,
Novy
,
Z.
, and
Cieslar
,
M.
,
2009
, “
Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing
,”
Mater. Sci. Eng., A
,
503
(
1–2
), pp.
126
129
.10.1016/j.msea.2008.03.050
24.
Shames
,
I. H.
, and
Cozzarelli
,
F. A.
,
Elastic and Inelastic Stress Analysis
,
Taylor & Francis
,
Abingdon, UK
.
25.
Takuda
,
H.
,
Morishita
,
T.
,
Kinoshita
,
T.
, and
Shirakawa
,
N.
,
2005
, “
Modeling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures
,”
J. Mater. Process. Technol.
,
164–165
(1), pp.
1258
1262
.10.1016/j.jmatprotec.2005.02.034
26.
Barnett
,
M. R.
,
2003
, “
A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 During Hot Working
,”
Metall. Mater. Trans. A
,
34
(
9
), pp.
1799
1806
.10.1007/s11661-003-0146-5
27.
Martin
,
É.
, and
Jonas
,
J. J.
,
2010
, “
Evolution of Microstructure and Microtexture During the Hot Deformation of Mg–3% Al
,”
Acta Mater.
,
58
(
12
), pp.
4253
4266
.10.1016/j.actamat.2010.04.017
28.
Bhattacharyya
,
J. J.
,
Agnew
,
S. R.
, and
Muralidharan
,
G.
,
2015
, “
Texture Enhancement During Grain Growth of Magnesium Alloy AZ31B
,”
Acta Mater.
,
86
(1), pp.
80
94
.10.1016/j.actamat.2014.12.009
You do not currently have access to this content.