Aerosol printing is one of the common methods used in printed electronics. In this study, an improved path planning algorithm is developed for an aerosol printing system. The continuous aerosol stream provided by a printing nozzle requires a constant relative velocity between the printer head and substrate in order to evenly deposit materials. To ensure consistency, the proposed algorithm confines speed fluctuations by predetermining potential velocity errors and compensating with a novel scheme. The path planning algorithm can control motion of an XY stage for an arbitrary printing path and desired velocity while minimizing material waste. Linear segments with parabolic blends (LSPB) trajectory planning is used during printing, and minimum time trajectory (MTT) planning is used during printer transition. Simulation results demonstrate the algorithm's improved capability to maintain the desired velocity while minimizing print time.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York.
10.1007/978-1-4939-2113-3
2.
Page
,
T.
,
2012
,
Design for Additive Manufacturing: Guidelines for Cost Effective Manufacturing
,
Lambert Academic Publishing
,
Saarbrücken, Germany
.
3.
Kadekar
,
V.
,
Fang
,
W.
, and
Liou
,
F.
,
2005
, “
Deposition Technologies for Micromanufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
787
795
.10.1115/1.1811118
4.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
Wiley
,
Hoboken, NJ
.
5.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.10.1115/1.4028599
6.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.10.1115/1.4028512
7.
Yu
,
Y.
,
Zhang
,
Y.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.10.1115/1.4028511
8.
Cantatore
,
E.
,
2013
,
Applications of Organic and Printed Electronics: A Technology-Enabled Revolution
,
Springer
,
New York
.
9.
Subramanian
,
V.
,
Frechet
,
J.
,
Chang
,
P.
,
Huang
,
D. C.
,
Lee
,
J.
,
Molesa
,
S.
,
Murphy
,
A.
,
Redinger
,
D.
, and
Volkman
,
S.
,
2005
, “
Progress Towards Development of All-Printed RFID Tags: Materials, Processes, and Devices
,”
Proc. IEEE
,
93
(
7
), pp.
1330
1338
.10.1109/JPROC.2005.850305
10.
Hur
,
S.-H.
,
Kocabas
,
C.
,
Gaur
,
A.
,
Park
,
O. O.
,
Shim
,
M.
, and,
Rogers
,
J. A.
,
2005
, “
Printed Thin-Film Transistors and Complementary Logic Gates That Use Polymer-Coated Single-Walled Carbon Nanotube Networks
,”
J. Appl. Phys.
,
98
(
11
), p.
114302
.10.1063/1.2135415
11.
Mustonen
,
T.
,
Mäklin
,
J.
,
Kordás
,
K.
,
Halonen
,
K, N.
,
Tóth
,
G.
,
Saukko
,
S.
,
Vähäkangas
,
J.
,
Jantunen
,
H.
,
Kar
,
S.
,
Ajayan
,
P. M.
,
Vajtai
,
R.
,
Helistö
,
P.
,
Seppä
,
H.
, and
Moilanen
,
H.
,
2008
, “
Controlled Ohmic and Nonlinear Electrical Transport in Inkjet-Printed Single-Wall Carbon Nanotube Films
,”
Phys. Rev. B
,
77
(
12
), p.
125430
.10.1103/PhysRevB.77.125430
12.
Liu
,
R.
,
Shen
,
F.
,
Ding
,
H.
,
Lin
,
J.
,
Gu
,
W.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2013
, “
All-Carbon-Based Field Effect Transistors Fabricated by Aerosol Jet Printing on Flexible Substrates
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065027
.10.1088/0960-1317/23/6/065027
13.
Gieser
,
H. A.
,
Bonfert
,
D.
,
Hengelmann
,
H.
,
Wolf
,
H.
,
Bock
,
K.
,
Zollmer
,
V.
,
Werner
,
C.
,
Domann
,
G.
,
Bahr
,
J.
,
Ndip
,
I.
,
Curran
,
B.
,
Oehler
,
F.
, and
Milosiu
,
H.
,
2010
, “
Rapid Prototyping of Electronic Modules Combining Aerosol Printing and Ink Jet Printing
,”
Proceedings of the Electronic System-Integration Technology Conference
,
Berlin
, pp.
1
6
.
14.
Park
,
S.
,
Vosguerichian
,
M.
, and
Bao
,
Z.
,
2013
, “
A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics
,”
Nanoscale
,
5
(
5
), pp.
1727
1752
.10.1039/c3nr33560g
15.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2013
, “
Aerosol-Printed Strain Sensor Using PEDOT:PSS
,”
IEEE Sens. J.
,
13
(
11
), pp.
4256
4263
.10.1109/JSEN.2013.2264482
16.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2012
, “
Aerosol Printed Carbon Nanotube Strain Sensor
,”
Proc. SPIE
8346
, San Diego, CA, Mar. 11.10.1117/12.914964
17.
Ando
,
B.
, and
Baglio
,
S.
,
2013
, “
All-Inkjet Printed Strain Sensors
,”
IEEE Sens. J.
,
13
(
12
), pp.
4874
4879
.10.1109/JSEN.2013.2276271
18.
Maiwald
,
M.
,
Werner
,
C.
,
Zoellmer
,
V.
, and
Busse
,
M.
,
2010
, “
INKtelligent Printed Strain Gauges
,”
Sens. Actuators Phys.
,
162
(
2
), pp.
198
201
.10.1016/j.sna.2010.02.019
19.
Zhao
,
D.
,
Liu
,
T.
,
Zhang
,
M.
,
Liang
,
R.
, and
Wang
,
B.
,
2012
, “
Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures
,”
Smart Mater. Struct.
,
21
(
11
), p.
115008
.10.1088/0964-1726/21/11/115008
20.
Hammond
,
F. L.
,
Smith
,
M. J.
, and
Wood
,
R. J.
,
2014
, “
Printing Strain Gauges on Surgical Instruments for Force Measurement
,”
ASME J. Med. Devices
,
8
(
3
), p.
030935
.10.1115/1.4027080
21.
Hoey
,
J. M.
,
Lutfurakhmanov
,
A.
,
Schulz
,
D. L.
, and
Akhatov
,
I. S.
,
2012
, “
A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics
,”
J. Nanotechnol.
,
2012
, p.
324380
.10.1155/2012/324380
22.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2014
, “
Efficient Path Planning Algorithm for Additive Manufacturing Systems
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
9
), pp.
1555
1563
.10.1109/TCPMT.2014.2338791
23.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
, “
Path and Trajectory Planning
,”
Robot Modeling and Control
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.