This study proposes an effective thermal control for plastic injection molding (polymer: Santoprene 8211-45 with density of 790 kg/m3, injection pressure: 1400 psi (9,652,660 Pa)) in a laminated die. For this purpose, a comprehensive control strategy is provided to cover various themes. First, a new method for determining the optimal sensor locations as a prerequisite step for modeling and controller design is introduced. Second, system identification through offline and online training with finite element analysis and neural network techniques are used to develop an accurate model by incorporating uncertain dynamics of the laminated die. Third, an additive feedforward control by adding direct adaptive inverse control to self-adaptive PID is developed for temperature control of cavity wall (cavity size: 52.9 × 32.07 × 16.03 mm). A verification of designed controller's performance demonstrates that the proposed strategy provides accurate online temperature tracking and faster response under thermal dynamics with various cycle-times in the injection mold process.

References

1.
Bishenden
,
W.
, and
Bhola
,
R.
,
1999
, “
Die Temperature Control
,” Transaction of the 20th International Die Casting Congress and Exposition, North American Die Casting Association, pp.
161
164
.
2.
Gorbach
,
P.
, and
Shutts
,
B.
,
2002
, “
The Use of Temperature Control Units in Die Casting Dies
,”
Die Cast. Eng.
,
46
, pp.
50
55
.
3.
Dubay
,
R.
,
Pramujati
,
B.
, and
Hernandez
,
J.
,
2005
, “
Cavity Temperature Control in Injection Molding
,”
2005 IEEE International Conference on Mechatronics and Automation
, pp.
911
916
.
4.
Yang
,
T.
,
Chen
,
X.
, and
Hu
,
H.
,
2007
, “
A Fuzzy PID Thermal Control System for Die Casting Processes
,”
22nd IEEE International Symposium on Intelligent Control
, Singapore, pp.
389
394
.
5.
Yang
,
T.
,
Hu
,
H.
,
Chen
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
,
2007
, “
Thermal Analysis of Casting Dies With Local Temperature Controller
,”
Int. J. Adv. Manuf. Technol.
,
33
, pp.
277
284
.10.1007/s00170-006-0468-8
6.
Vetter
,
R.
,
Maijer
,
D.
,
Huzmezan
,
M.
, and
Meade
,
D.
,
2004
, “
Control of a Die Casting Simulation Using an Industrial Adaptive Model-Based Predictive Controller
,”
Proceedings of the Symposium Sponsored by the Extraction and Processing Division of the Minerals, Metals and Materials Society
, pp.
235
246
.
7.
Dubay
,
R.
,
2002
, “
Self-Optimizing MPC of Melt Temperature in Injection Moulding
,”
ISA Trans.
,
41
(
1
), pp.
81
94
.10.1016/S0019-0578(07)60204-3
8.
Tsai
,
C.
, and
Lu
,
C.
,
1998
, “
Multivariable Self-Tuning Temperature Control for Plastic Injection Molding Process
,”
IEEE Trans. Ind. Appl.
,
34
(
2
), pp.
310
318
.10.1109/28.663473
9.
Lu
,
C.
, and
Tsai
,
C.
,
2001
, “
Adaptive Decoupling Predictive Temperature Control for an Extrusion Barrel in a Plastic Injection Molding Process
,”
IEEE Trans. Ind. Electron.
,
48
(
5
), pp.
968
975
.10.1109/41.954561
10.
11.
12.
Demetriou
,
M.
,
2005
, “
Robust Sensor Location Optimization in Distributed Parameter Systems Using Functional Observers
,”
Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference
, Seville, Spain, pp.
7187
7192
.
13.
Dour
,
G.
,
Dargusch
,
M.
, and
Davidson
,
C.
,
2006
, “
Recommendations and Guidelines for the Performance of Accurate Heat Transfer Measurements in Rapid Forming Processes
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1773
1789
.10.1016/j.ijheatmasstransfer.2005.10.045
14.
Hamasaiid
,
A.
,
Dour
,
G.
,
Dargusch
,
M.
,
Loulou
,
T.
,
Davidson
,
C.
, and
Savage
,
G.
,
2008
, “
Heat-Transfer Coefficient and In-Cavity Pressure at the Casting-Die Interface During High-Pressure Die Casting of the Magnesium Alloy AZ91D
,”
Metall. Mater. Trans. A
,
39
, pp.
853
864
.10.1007/s11661-007-9452-7
15.
Udwadia
,
F.
,
1994
, “
Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems
,”
J. Eng. Mech.
,
120
, pp.
368
390
.10.1061/(ASCE)0733-9399(1994)120:2(368)
16.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J.
,
2011
, “
Optimal Sensor Location in Laminated Die System
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
021013
.10.1115/1.4005035
17.
Zheng
,
C.
, and
Bennett
,
G.
,
2002
,
Applied Contaminant Transport Modeling
,
Wiley-Interscience
,
New York
, pp.
343
348
.
18.
McLoone
,
S.
, and
Irwin
,
G.
,
1997
, “
Fast Parallel Off-Line Training of Multilayer Perceptrons
,”
IEEE Trans. Neural Netw.
,
8
, pp.
646
653
.10.1109/72.572103
19.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall, Pearson Education
,
Englewood Cliffs, NJ
, pp.
754
811
.
20.
Lin
,
T.
,
Horne
,
B.
,
Tino
,
P.
, and
Giles
,
C.
,
1996
, “
Learning Long-Term Dependencies in NARX Recurrent Neural Networks
,”
IEEE Trans. Neural Netw.
,
7
(
6
), pp.
1329
1351
.10.1109/72.548162
21.
Gao
,
Y.
, and
Er
,
M.
,
2005
, “
NARMAX Time Series Model Prediction: Feedforward and Recurrent Fuzzy Neural Network Approaches
,”
Fuzzy Sets Syst.
,
150
(
2
), pp.
331
350
.10.1016/j.fss.2004.09.015
22.
Diaconescu
,
E.
,
2008
, “
The Use of NARX Neural Networks to Predict Chaotic Time Series
,”
WSEAS Trans. Comput. Res.
,
3
(
3
), pp.
182
191
.
23.
Hu
,
H.
,
Chen
,
F.
,
Chen
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
,
2004
, “
Effect of Cooling Water Flow Rates on Local Temperatures and Heat Transfer of Casting Dies
,”
J. Mater. Process. Technol.
,
148
, pp.
439
451
.10.1016/j.jmatprotec.2004.01.040
24.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J.
,
2011
, “
Identification of Die Thermal Dynamics Using Neural Networks
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
061008
.10.1115/1.4004045
25.
Gao
,
F.
,
Patterson
,
W.
, and
Kamal
,
M.
,
1993
, “
Dynamics and Control of Surface and Mold Temperature in Injection Molding
,”
Int. Polym. Process.
,
8
, pp.
147
157
.10.3139/217.930147
26.
He
,
X.
, and
Asada
,
H.
,
1993
, “
A New Method for Identifying Orders of Input–Output Models for Nonlinear Dynamic Systems
,”
Proceedings of the American Control Conference
, pp.
2520
2523
.
27.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J.
,
2014
, “
Thermal Management in Laminated Die System
,”
Int. J. Control, Autom. Syst.
(to be published). 10.1007/s12555-013-0348-6
28.
Sha
,
D.
, and
Bajic
,
V.
,
1999
, “
On-Line Adaptive Learning Rate BP Algorithm for Multi-Layer Feed-Forward Neural Networks
,”
J. Appl. Comput. Sci
,
7
(
2
), pp.
67
82
.
29.
Karray
,
F.
, and
De Silva
,
C.
,
2004
,
Soft Computing and Intelligent Systems Design
,
Addison-Wesley
,
Reading, MA
, pp.
299
335
.
30.
Dias
,
F.
,
Antunes
,
A.
, and
Mota
,
A.
,
2005
, “
Additive Internal Model Control: A New Control Strategy
,”
Int. Trans. Comput. Sci. Eng.
,
25
, pp.
1
12
.
31.
Wang
,
J.
,
Zhang
,
C.
, and
Jiang
,
Y.
,
2008
, “
Adaptive PID Control With BP Neural Network Self-Tuning in Exhaust Temperature of Micro Gas Turbine
,”
3rd IEEE Conference on Industrial Electronics and Applications
, pp.
532
537
.
32.
Jiang
,
J.
,
Wen
,
S.
,
Zhou
,
Z.
, and
He
,
H.
,
2008
, “
Fuzzy Barrel Temperature PID Controller Based on Neural Network
,”
CISP ‘08 Proceedings of the 2008 Congress on Image and Signal Processing
,
1
, pp.
90
94
.
33.
Guo
,
B.
,
Liu
,
H.
,
Luo
,
Z.
, and
Wang
,
F.
,
2009
, “
Adaptive PID Controller Based on BP Neural Network
,”
International Joint Conference on Artificial Intelligence
, pp.
148
150
.
34.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J.
,
2011
, “
Thermal Dynamic Modeling and Control of Injection Moulding Process
,”
Autonomous Intell. Syst.
,
6752
, pp.
102
111
.10.1007/978-3-642-21538-4
You do not currently have access to this content.