In this paper, a systematic evaluation of six ductile fracture models is conducted to identify the most suitable fracture criterion for metal cutting processes. Six fracture models are evaluated in this study, including constant fracture strain, Johnson-Cook, Johnson-Cook coupling criterion, Wilkins, modified Cockcroft-Latham, and Bao-Wierzbicki fracture criterion. By means of abaqus built-in commands and a user material subroutine (VUMAT), these fracture models are implemented into a finite element (FE) model of orthogonal cutting processes in abaqus/Explicit platform. The local parameters (stress, strain, fracture factor, and velocity fields) and global variables (chip morphology, cutting forces, temperature, shear angle, and machined surface integrity) are evaluated. The numerical simulation results are examined by comparing to experimental results of 2024-T3 aluminum alloy published in the open literature. Based on the results, it is found that damage evolution should be considered in cutting process FE simulation. Moreover, the B-W fracture model with consideration of rate dependency, temperature effect and damage evolution gives the best prediction of chip removal behavior of ductile metals.

References

1.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.-F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1187
1197
.10.1016/j.ijmachtools.2008.03.013
2.
Tugrul
,
Ö.
,
2006
, “
The Influence of Friction Models on Finite Element Simulations of Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
518
530
.10.1016/j.ijmachtools.2005.07.001
3.
Atkins
,
T.
,
2009
,
Science and Engineering of Cutting—The Mechanics and Processes of Separating, Scratching and Puncturing Biomaterials, Metals and Non-Metals
,
Butterworth-Heinemann
,
Oxford, UK
.
4.
Childs
,
T. H. C.
, and
Maekawa
,
K.
,
1990
, “
Computer-Aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Low Alloy Steels by Cemented Carbide Tools
,”
Wear
,
139
(
2
), pp.
235
250
.10.1016/0043-1648(90)90048-F
5.
Dirikolu
,
M. H.
,
Childs
,
T. H. C.
, and
Maekawa
,
K.
,
2001
, “
Finite Element Simulation of Chip Flow in Metal Machining
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2699
2713
.10.1016/S0020-7403(01)00047-9
6.
Shi
,
J.
, and
Liu
,
C. R.
,
2004
, “
The Influence of Material Models on Finite Element Simulation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
849
857
.10.1115/1.1813473
7.
Litonski
,
J.
,
1977
, “
Plastic Flow of a Tube Under Adiabatic Torsion
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
,
25
(
1
), pp.
7
14
.
8.
Batra
,
R. C.
,
1988
, “
Steady State Penetration of Thermoviscoplastic Targets
,”
Comput. Mech.
,
3
(
1
), pp.
1
12
.10.1007/BF00280747
9.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
577
585
.10.1115/1.2833062
10.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain rate, and Temperatures
,”
International Symposium on Ballistics, The Hague
,
The Netherlands
, pp.
1
7
.
11.
Bodner
,
S. R.
, and
Black
,
J. T.
,
1975
, “
Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,”
J. Appl. Mech.
,
56
, pp.
385
389
.10.1115/1.3423586
12.
Özel
,
T.
,
2006
, “
The Influence of Friction Models on Finite Element Simulations of Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
518
530
.10.1016/j.ijmachtools.2005.07.001
13.
Huang
,
J. M.
, and
Black
,
J. T.
,
1996
, “
An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
118
(
4
), pp.
545
554
.10.1115/1.2831066
14.
Zhang
,
L.
,
1999
, “
On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method
,”
J. Mater. Process. Technol.
,
89–90
, pp.
273
278
.10.1016/S0924-0136(99)00023-0
15.
Teng
,
X.
, and
Wierzbicki
,
T.
,
2006
, “
Evaluation of Six Fracture Models in High Velocity Perforation
,”
Eng. Fract. Mech.
,
73
(
12
), pp.
1653
1678
.10.1016/j.engfracmech.2006.01.009
16.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
, pp.
541
547
.
17.
Zorev
,
N. N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
International Research in Production Engineering, ASME
,
New York
, pp.
42
49
.
18.
Zhang
,
X.
,
Wu
,
S.
,
Wang
,
H.
, and
Liu
,
C. R.
,
2011
, “
Predicting the Effects of Cutting Parameters and Tool Geometry on Hard Turning Process Using Finite Element Method
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041010
.10.1115/1.4004611
19.
Li
,
K.
,
Gao
,
X. L.
, and
Sutherland
,
J. W.
,
2002
, “
Finite Element Simulation of the Orthogonal Metal Cutting Process for Qualitative Understanding of the Effects of Crater Wear on the Chip Formation Process
,”
J. Mater. Process. Technol.
,
127
(
3
), pp.
309
324
.10.1016/S0924-0136(02)00281-9
20.
Jing
,
S.
, and
Liu
,
C. R.
,
2006
, “
On Predicting Chip Morphology and Phase Transformation in Hard Machining
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
645
654
.10.1007/s00170-004-2293-2
21.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
117
(
1
), pp.
84
93
.10.1115/1.2803283
22.
Ng
,
E.-G.
, and
Aspinwall
,
D. K.
,
2000
, “
Hard Part Machining AISI H13 (Approximately 50 HRC) Using AMBORITE AMB90: A Finite Element Modelling Approach
,”
Ind. Diamond Rev.
,
60
(
587
), pp.
305
310
.
23.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures, and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
24.
H. K. S.
,
2011
, “
ABAQUS/Explicit Analysis User Manual
,” Version 6.11.
25.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
26.
Atkins
,
A. G.
,
2003
, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
,
45
(
2
), pp.
373
396
.10.1016/S0020-7403(03)00040-7
27.
Wilkins
,
M. L.
,
Streit
,
R. D.
, and
Reaugh
,
J. E.
,
1980
, “
Cumulative-Strain-Damage Model of Ductile Fracture: Simulation and Prediction of Engineering Fracture Tests
,” Lawrence Livermore National Laboratory, CA (USA), Science Applications, Inc., San Leandro, CA, Technical Report, UCRL-53058.
28.
Wilkins
,
M. L.
,
1978
, “
Mechanics of Penetration and Perforation
,”
Int. J. Eng. Sci.
,
16
(
11
), pp.
793
807
.10.1016/0020-7225(78)90066-6
29.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
.10.1115/1.1755244
30.
Bil
,
H.
,
Kılıç
,
S. E.
, and
Tekkaya
,
A. E.
,
2004
, “
A Comparison of Orthogonal Cutting Data From Experiments With Three Different Finite Element Models
,”
Int. J. Mach. Tools Manuf.
,
44
(
9
), pp.
933
944
.10.1016/j.ijmachtools.2004.01.016
31.
Aurich
,
J. C.
, and
Bil
,
H.
,
2006
, “
3D Finite Element Modelling of Segmented Chip Formation
,”
CIRP Ann.
,
55
(
1
), pp.
47
50
.10.1016/S0007-8506(07)60363-1
32.
Ceretti
,
E.
,
Lucchi
,
M.
, and
Altan
,
T.
,
1999
, “
FEM Simulation of Orthogonal Cutting: Serrated Chip Formation
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
17
26
.10.1016/S0924-0136(99)00261-7
33.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.10.1016/j.ijmecsci.2004.02.006
34.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2005
, “
On the Cut-Off Value of Negative Triaxiality for Fracture
,”
Eng. Fract. Mech.
,
72
(
7
), pp.
1049
1069
.10.1016/j.engfracmech.2004.07.011
35.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2010
,
Metal Cutting
,
Butterworth-Heinemann
,
Oxford, UK
.
36.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
.10.1016/j.ijmachtools.2009.02.006
37.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current state of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
666
678
.10.1115/1.1813469
You do not currently have access to this content.