The objective of this research is to study the effect of graphene platelet (GPL) loading on the machinability of epoxy-based GPL composites. To this end, micro-milling experiments are conducted on composites with varying GPL content and their results are contrasted against that of plain epoxy. The material microstructure is characterized using transmission electron microscopy and scanning electron microscopy methods. Chip morphology, cutting force, machined surface morphology, and tool wear, are employed as the machinability measures for comparative purposes. At lower loadings of GPL (0.1% and 0.2% by weight), the deformation of the polymer phase plays a major role; whereas, at a higher loading of 0.3% by weight, the GPL agglomerates and interface-dominated failure dictates the machining response. The minimum chip thickness value of the composites decreases with an increase in GPL loading. Overall, the 0.2% GPL composite has the highest cutting force and the lowest tool wear.

References

1.
Noorden
,
R. V.
,
2011
, “
The Trials of New Carbon
,”
Nature (London)
,
469
, pp.
14
16
.10.1038/469014a
2.
Park
,
S.
, and
Ruoff
,
R. S.
,
2009
, “
Chemical Methods for the Production of Graphenes
,”
Nature Nanotechnol.
,
4
, pp.
217
224
.10.1038/nnano.2009.58
3.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nature Mater.
,
6
, pp.
183
191
.10.1038/nmat1849
4.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
, pp.
385
388
.10.1126/science.1157996
5.
Van Den Brink
,
J.
,
2007
, “
Graphene: From Strength to Strength
,”
Nature Nanotechnol.
,
2
, pp.
199
201
.10.1038/nnano.2007.91
6.
Li
,
D.
, and
Kaner
,
R.
,
2008
, “
Materials Science: Graphene-Based Materials
,”
Science
,
320
, pp.
1170
1171
.10.1126/science.1158180
7.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature (London)
,
442
, pp.
282
286
.10.1038/nature04969
8.
Eklund
,
P.
,
Ajayan
,
P.
,
Blackmon
,
R.
,
Hart
,
A. J.
,
Kong
,
J.
,
Pradhan
,
B.
,
Rao
,
A.
, and
Rinzler
,
A.
,
2007
, “International Assessment of Research and Development on Carbon Nanotubes: Manufacturing and Application,” World Technology Evaluation Center (WTEC) Panel Report.
9.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
J.
,
2006
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
465
473
.10.1115/1.2137753
10.
Samuel
,
J.
,
Dikshit
,
A.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2008
, “
Effect of Carbon Nanotube (CNT) Loading on the Thermo-Mechanical Properties and the Machinability of CNT-Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031008
.10.1115/1.3123337
11.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2007
, “
Effect of Carbon Nanotube Loading on the Machinability of Polycarbonate Nanocomposites
,”
Int. J. Mech. Eng. Mater. Sci.
,
1
(
2
), pp.
75
84
.
12.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part I: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031114
.10.1115/1.2917378
13.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part II: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031115
.10.1115/1.2927431
14.
Samuel
,
J.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Hsia
,
K. J.
,
2010
, “
Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051012
.10.1115/1.4002495
15.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
, pp.
179
183
.10.1002/smll.200901480
16.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2009
, “
Buckling Resistant Graphene Nanocomposites
,”
Appl. Phys. Lett.
,
95
, p.
223103
.10.1063/1.3269637
17.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
, pp.
3884
3890
.10.1021/nn9010472
18.
Rafiee
,
J.
,
Rafiee
,
M. A.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2010
, “
Super-Hydrophobic to Superhydrophilic Wetting Control in Graphene Films
,”
Adv. Mater.
,
22
, pp.
2151
2154
.10.1002/adma.200903696
19.
Schniepp
,
H. C.
,
Li
,
J.-L.
,
McAllister
,
M. J.
,
Sai
,
H.
,
Herrera-Alonso
,
M.
,
Adamson
,
D. H.
,
Prud'homme
,
R. K.
,
Car
,
R.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
,
2006
, “
Functionalized Single Graphene Sheets Derived From Splitting Graphite Oxide
,”
J. Phys. Chem. B
,
110
, pp.
8535
8539
.10.1021/jp060936f
20.
McAllister
,
M. J.
,
Li
,
J.-L.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Abdala
,
A. A.
,
Liu
,
J.
,
Herrera-Alonso
,
M.
,
Milius
,
D. L.
,
Car
,
R.
,
Prud'homme
,
R. K.
, and
Aksay
I. A.
,
2007
, “
Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
,”
Chem. Mater.
,
19
, pp.
4396
4404
.10.1021/cm0630800
21.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
,
50
, pp.
61
64
.10.1016/S0007-8506(07)62071-X
22.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.10.1115/1.2162905
23.
Saito
,
K.
,
1981
, “
Fracture Phenomena of High Polymers in Cutting
,”
J. Macromol. Sci., Part B Phys.
,
19
(
3
), pp.
459
485
.10.1080/00222348108015314
24.
Xiao
,
K. Q.
, and
Zhang
,
L. C.
,
2002
, “
The Role of Viscous Deformation in the Machining of Polymers
,”
Int. J. Mech. Sci.
,
44
(
11
), pp.
2317
2336
.10.1016/S0020-7403(02)00178-9
25.
Childs
,
T. H. C.
, and
Rowe
,
G. W.
,
1973
, “
Physics in Metal Cutting
,”
Rep. Prog. Phys.
,
36
, pp.
223
288
.10.1088/0034-4885/36/3/001
26.
Lin
,
J.
,
Wang
,
L.
, and
Chen
,
G.
,
2011
, “
Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive
,”
Tribol. Lett.
,
41
(
1
), pp.
209
215
.10.1007/s11249-010-9702-5
27.
Kobayashi
,
A.
,
1967
,
Machining of Plastics
,
McGraw-Hill
,
NY
, pp.
1
35
, 94–106.
28.
Jasinevicius
,
R. G.
,
Andreeta
,
M. R. B.
,
Fossa
,
J. S.
,
Hernandes
,
A. C.
,
Duduch
,
J. G.
,
Demont
,
P.
, and
Puech
,
P.
,
2009
, “
Brittle and Ductile Removal Modes Observed During Diamond Turning of Carbon Nanotube Composites
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
1
), pp.
1
8
.10.1243/09544054JEM1257
29.
Muhammad
,
I.
,
Mativenga
,
P. T.
, and
Withers
,
P. J.
,
2012
, “
Assessment of Machining Performance Using the Wear Map Approach in Micro-Drilling
,”
Int. J. Adv. Manuf. Technol.
,
59
(1–4), pp.
119
126
.
30.
Samuel
,
J.
,
Rafiee
,
K.
,
Dhiman
,
P.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Synthetic Metal Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
.10.1021/jp110885n
31.
Bershtein
,
V. A.
,
Egorova
,
L. M.
,
Yakushev
,
P. N.
,
Pissis
,
P.
,
Sysel
,
P.
, and
Brozova
,
L.
,
2002
, “
Molecular Dynamics in Nanostructured Polyimide-Silica Hybrid Materials and Their Thermal Stability
,”
J. Polym. Sci.
,
40
(
10
), pp.
1056
1069
.
32.
Marcon
,
A.
,
Melkote
,
S.
,
Kalaitzidou
,
K.
, and
DeBra
,
D.
,
2010
, “
An Experimental Evaluation of Graphite Nanoplatelet-Based Lubricant in Micro-Milling
,”
CIRP Ann., Manuf. Technol.
,
59
, pp.
141
144
.10.1016/j.cirp.2010.03.083
You do not currently have access to this content.