For the current practice of improving fuel efficiency and reducing emissions in the automotive sector, it is becoming more common to use low density/high strength materials instead of costly engine/drivetrain technologies. With these materials there are normally many manufacturing difficulties that arise during their incorporation to the vehicle. As a result, new processes which improve the manufacturability of these materials are necessary. This work examines the manufacturing technique of electrically-assisted forming (EAF) where an electrical current is applied to the workpiece during deformation to modify the material's formability. In this work, the thermal response of sheet metal for stationary (i.e., no deformation) and deformation tests using this process are explored and modeled. The results of the model show good agreement for the stationary tests while for the deformation tests, the model predicts that all of the applied electrical current does not generate Joule heating. Thus, this work suggests from the observed response that a portion of the applied current may be directly aiding in deformation (i.e., the electroplastic effect). Additionally, the stress/strain response of Mg AZ31 under tensile forming using EAF is presented and compared to prior experimental work for this material.

References

1.
National Highway Traffic Safety Administration (NHTSA)
,
2010
, “
Light‐Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule
,” Federal Register 40 CFR Parts 85, 86, and 600; 49 CFR Parts 531, 533, 536, 537, 538, pp.
25323
25728
.
2.
Groover
,
M. P.
,
2007
,
Fundamentals of Modern Manufacturing
, 3rd ed.,
Wiley & Sons
,
Hoboken, NJ
.
3.
Golovashchenko
,
S. F.
,
Krause
,
A.
, and
Gillard
,
A. J.
,
2005
, “
Incremental Forming for Aluminum Automotive Technology
,” 2005
ASME
International Mechanical Engineering Congress and Exposition, Paper No. IMECE2005-81069, pp.
323
329
.10.1115/IMECE2005-81069
4.
Kalpakjian
,
S.
,
1997
,
Manufacturing Processes for Engineering Materials
, 3rd ed.,
Addison Westley Longman Inc.
,
Menlo Park, CA
, pp.
421
422
.
5.
Kinsey
,
B. L.
, and
Cao
,
J.
,
2003
, “
An Analytical Model for Tailor Welded Blank Forming
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
344
351
.10.1115/1.1537261
6.
Roth
,
J. T.
,
Loker
,
I.
,
Mauck
,
D.
,
Warner
,
M.
,
Golovashchenko
,
S. F.
, and
Krause
,
A.
,
2008
, “
Enhanced Formability of 5754 Aluminum Sheet Metal Using Electric Pulsing
,”
Trans. North Am. Manuf. Res. Inst. SME
,
36
, pp.
405
412
.
7.
Jones
,
J. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2012
, “
Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
034504
.10.1115/1.4006547
8.
Green
,
C. R.
,
McNeal
,
T. A.
, and
Roth
,
J. T.
,
2009
, “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,”
Trans. North Am. Manuf. Res. Inst. SME
,
37
, pp.
403
410
.
9.
Machlin
,
E. S.
,
1959
, “
Applied Voltage and the Plastic Properties of ‘Brittle’ Rock Salt
,”
J. Appl. Phys.
,
30
(
7
), pp.
1109
1110
.10.1063/1.1776988
10.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
.10.1115/1.2386164
11.
Andrawes
,
J. S.
,
Kronenberger
,
T. J.
,
Perkins
,
T. A.
,
Roth
,
J. T.
, and
Warley
,
R. L.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Proc.
,
22
(
1
), pp.
91
101
.10.1080/10426910601016004
12.
Zhang
,
W.
,
2010
,
Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations
,
Taylor and Francis Group
,
Boca Raton
, FL, pp.
505
536
.
13.
Bunget
,
C.
,
Salandro
,
W.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2010
, “
Energy-Based Modeling of an Electrically-Assisted Forging Process
,”
Trans. North Am. Manuf. Res. Inst. SME
,
38
, pp.
647
654
.
14.
Jones
,
J. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2010
, “
Empirical Modeling of the Stress-Strain Relationship for an Upsetting Process Under Direct Electrical Current
,”
Trans. North Am. Manuf. Res. Inst. SME
,
38
, pp.
451
458
.
15.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2010
, “
Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal
,” 2010
ASME
International Manufacturing Science and Engineering Conference,
Erie, PA
, Paper No. MSEC2010-34043, pp.
581
590
.10.1115/MSEC2010-34043
16.
Jones
,
J. J.
, and
Mears
,
L.
,
2011
, “
Constant Current Density Compression Behavior of 304 Stainless Steel and Ti-6Al-4V During Electrically-Assisted Forming
,” 2011
ASME
International Manufacturing Science and Engineering Conference,
Corvallis, OR
, Paper No. MSEC2011-50287, pp.
629
637
.10.1115/MSEC2011-50287
17.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Thermo-Mechanical Investigations of the Electroplastic Effect
,” 2011
ASME
International Manufacturing Science and Engineering Conference,
Corvallis, OR
, Paper No. MSEC2011-50250, pp.
573
582
.10.1115/MSEC2011-50250
18.
ASTM B557M—10: Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric), 2010.
19.
United States Department of Defense
,
1998
,
Department of Defense Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5H
, Wright-Patterson AFB, Ohio.
20.
Cengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
, 3rd ed.,
McGraw Hill
,
Boston
.
21.
Salandro
,
W. A.
,
Jones
,
J. J.
,
McNeal
,
T. A.
,
Roth
,
J. T.
,
Hong
,
S. T.
, and
Smith
,
M. T.
,
2010
, “
Formability of Al 5xxx Sheet Metals Using Pulsed Current for Varying Heat Treatments
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051016
10.1115/1.4002185
22.
Salandro
,
W. A.
,
Khalifa
,
A.
, and
Roth
,
J. T.
,
2009
, “
Tensile Formability Enhancement of Magnesium AZ31B-O Alloy Using Electrical Pulsing
,”
Trans. North Am. Manuf. Res. Inst. SME
,
37
, pp.
387
394
.
You do not currently have access to this content.