The design and manufacturing process for a porous-restricted aerostatic lead screw actuator (ALSA) is presented. The ALSA provides near-frictionless motion with submicron positioning accuracy, high stiffness at low inlet air pressures (<827 kPa), and a travel length of 50 mm. Porous graphite disk inserts are held in a helical pattern in an aerostatic nut housing against a lead screw thread to create multiple simultaneous air bearing surfaces. A wave spring flexure is inserted behind each graphite disk to provide a preload and ensure full contact between the porous graphite disk surface and the lead screw flank. When the wave spring flexures and graphite disks are potted in combination with a slow-curing epoxy, this creates a self-aligning method to consistently match all graphite disk insert surfaces to the helical profile of the lead screw thread. Experimental trials were performed to evaluate the performance of the manufactured ALSA. It was found that a stable nut with a per-thread stiffness of 9.7 N/μm was achievable with a 3.5 μm air gap and an overall permeability of 5.4 × 10−15 m2. Applications requiring higher stiffness may couple two or more single-threaded nuts to achieve the desired actuator stiffness.

References

1.
Ehmann
,
K. F.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Cao
,
J.
,
2008
,
Smart Devices and Machines for Advanced Manufacturing
,
Springer
,
London, UK
, pp.
283
318
.
2.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
.10.1016/j.precisioneng.2008.11.002
3.
Cao
,
Z.
, and
Li
,
H.
,
2010
, “
Investigation of Micro-Milling Force Based on Miniature Machine Tool
,”
Appl. Mech. Mater.
,
29–32
, pp.
1074
1078
.10.4028/www.scientific.net/AMM.29-32.1074
4.
Ellicott
,
G. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2009
, “
Machinability Investigation of Micro-Scale Hard Turning of 52100 Steel
,”
Trans. NAMRI/SME
,
37
, pp.
143
150
.
5.
Zhao
,
P.
, and
Satomi
,
T.
,
2007
, “
Study on Aerostatic Lead Screw—Discussion on the Calculation Method of Fluctuation
,”
J. Jpn. Soc. Precis. Eng.
,
73
(
12
), pp.
1350
1355
.10.2493/jjspe.73.1350
6.
Tachikawa
,
H.
,
Fukuda
,
M.
,
Shinshi
,
T.
,
Sato
,
K.
, and
Shimokohbe
,
A.
,
1997
, “
Ultra Precision Positioning Using Air Bearing Lead Screw
,”
Trans. Jpn. Soc. Mech. Eng.
,
66
(
645
), pp.
1559
1566
.
7.
Slocum
,
A. H.
,
1989
, “
System to Convert Rotary Motion to Linear Motion
,” U.S. Patent No. 4,836,042.
8.
Slocum
,
A. H.
,
1992
, “
System to Convert Rotary Motion to Linear Motion
,” U.S. Patent No. 5,090,265.
9.
Adair
,
K. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2011
, “
An Approach to the Economic Manufacture of an Aerostatic Lead Screw for Micro-Scale Machine Tools
,”
J. Manuf. Process
,
13
(
1
), pp.
16
23
.10.1016/j.jmapro.2010.09.001
10.
Plante
,
J. S.
,
Vogan
,
J.
,
Aguizy
,
T. E.
, and
Slocum
,
A. H.
,
2005
, “
A Design Model for Circular Porous Air Bearings Using the 1D Generalized Flow Model
,”
Precis. Eng.
,
29
(
3
), pp.
336
346
.10.1016/j.precisioneng.2004.11.011
11.
Teramachi
,
A.
,
Aso
,
T.
,
Tanaka
,
Y.
,
Kaneshige
,
H.
, and
Xu
,
Y.
,
2008
, “
Linear Motor Actuator
,” U.S. Patent No. 7,456,526.
12.
Loctite Hysol E-120HP Data Sheet, http://tds.loctite.com/tds5/docs/HYSAE-120HP-EN.PDF
13.
Rasnik
,
W. H.
,
Arehart
,
T. A.
,
Littleton
,
D. E.
, and
Steger
,
P. J.
,
1974
, “
Porous Graphite Air-Bearing Components as Applied to Machine Tools
,”
Society of Manufacturing Engineers, Technical Report No. MRR74-02
.
14.
Yoshimoto
,
S.
,
Tozuka
,
H.
, and
Dambara
,
S.
,
2003
, “
Static Characteristics of Aerostatic Porous Journal Bearings With a Surface-Restricted Layer
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
217
(
2
), pp.
125
132
.10.1243/13506500360603552
You do not currently have access to this content.