This study will present an experimental evaluation of the variable-feedrate intelligent segmentation (VFIS) method described by Mayor and Sodemann (2008, “Intelligent Tool-Path Segmentation for Improved Stability and Reduced Machining Time in Micromilling,” ASME J. Manuf. Sci. Eng., 130(3), p. 031121). The apparatus for the tests will be identified and the approach to the testing procedure will be laid out, including the means of evaluation of the method. A detailed explanation is then given for the choice of process parameters. This is followed by the introduction of the β parameter as an additional factor in the VFIS implementation. Results are presented from cutting tests. The first set of test results presented is from a complete set of evaluation tests performed on sine wave geometries. The second set is an evaluation of the fan and airfoil shapes used previously in the numerical simulations of the VFIS method. It is found that the VFIS method is able to successfully constrain geometric error to within specified bounds in most cases. The cutting time for the VFIS method shows as much as 53% reduction relative to the nonuniform rational B-spline-based trajectory generation method.

1.
Stoker
,
J. J.
, 1969,
Differential Geometry
,
Wiley-Interscience
,
New York
.
2.
Sun
,
Y.
,
Wang
,
J.
, and
Guo
,
D.
, 2006, “
Guide Curve Based Interpolation Scheme of Parametric Curves for Precision CNC Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
235
242
.
3.
Yang
,
M.
, and
Hong
,
W.
, 2002, “
Three-Dimensional Reference Pulse Linear and Circular Interpolators for CNC Systems
,”
Int. J. Prod. Res.
0020-7543,
40
(
2
), pp.
425
439
.
4.
Zeid
,
I.
, 2005,
Mastering CAD/CAM
,
McGraw-Hill
,
New York
.
5.
Yau
,
H.
, and
Kuo
,
M.
, 2001, “
NURBS Machining and Feed Rate Adjustment for High-Speed Cutting of Complex Sculptured Surfaces
,”
Int. J. Prod. Res.
0020-7543,
39
(
1
), pp.
21
41
.
6.
Lo
,
C.
, 1999, “
Real-Time Generation and Control of Cutter Path for 5-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
471
488
.
7.
Park
,
J.
,
Nam
,
S.
, and
Yang
,
M.
, 2005, “
Development of a Real-Time Trajectory Generator for NURBS Interpolation Based on the Two-Stage Interpolation Method
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
, pp.
359
365
.
8.
Nam
,
S.
, and
Yang
,
M.
, 2004, “
A Study on a Generalized Parametric Interpolator With Real-Time Jerk-Limited Acceleration
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
27
36
.
9.
Cheng
,
M. -Y.
,
Tsai
,
M. -C.
, and
Kuo
,
J. -C.
, 2002, “
Real-Time NURBS Command Generators for CNC Servo Controllers
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
801
813
.
10.
Fleisig
,
R. V.
, and
Spence
,
A. D.
, 2001, “
A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
1
15
.
11.
Ren
,
Y.
, and
Lee
,
Y.
, 2004, “
Explicit Free-Form Curve Interpolation and Error Analysis for NC Machining of Complex Surface Models
,”
Computer-Aided Design and Applications
,
1
(
1–4
), pp.
243
250
.
12.
Wang
,
S.
,
Yu
,
H.
, and
Liao
,
H.
, 2006, “
A New High-Efficiency Error Compensation System for CNC Multi-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
, pp.
518
526
.
13.
Yeh
,
S.
, and
Hsu
,
P.
, 2002, “
Adaptive-Feedrate Interpolation for Parametric Curves With a Confined Chord Error
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
229
237
.
14.
Zhiming
,
X.
,
Jincheng
,
C.
, and
Zhengjin
,
F.
, 2002, “
Performance Evaluation of a Real-Time Interpolation Algorithm for NURBS Curves
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
, pp.
270
276
.
15.
Farouki
,
R. T.
, and
Tsai
,
Y.
, 2001, “
Exact Taylor Series Coefficients for Variable-Feedrate CNC Curve Interpolators
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
155
165
.
16.
Tsai
,
Y.
,
Farouki
,
R. T.
, and
Feldman
,
B.
, 2001, “
Performance Analysis of CNC Interpolators for Time-Dependent Feedrates Along PH Curves
,”
Comput. Aided Geom. Des.
0167-8396,
18
, pp.
245
265
.
17.
Yong
,
T.
, and
Narayanaswami
,
R.
, 2003, “
A Parametric Interpolator With Confined Chord Errors, Acceleration and Deceleration for NC Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
1249
1259
.
18.
Phillip
,
A. G.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
, 2006, “
A New Acceleration-Based Methodology for Micro/Meso-Scale Machine Tool Performance Evaluation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1435
1444
.
19.
Mayor
,
J. R.
, and
Sodemann
,
A. A.
, 2008, “
Intelligent Tool-Path Segmentation for Improved Stability and Reduced Machining Time in Micromilling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
031121
.
20.
Jun
,
M. B. G.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
901
912
.
21.
Kim
,
C.
,
Mayor
,
J. R.
, and
Ni
,
J.
, 2004, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
710
718
.
22.
Li
,
H. Z.
,
Li
,
X. P.
, and
Chen
,
X. Q.
, 2003, “
A Novel Chatter Stability Criterion for the Modeling and Simulation of the Dynamic Milling Process in the Time Domain
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
22
, pp.
619
625
.
23.
Lacerda
,
H. B.
, and
Lima
,
V. T.
, 2004, “
Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling
,”
Journal of the Brazil Society of Mechanical Science & Engineering
,
26
(
1
), pp.
74
81
.
You do not currently have access to this content.