In this work, we demonstrate the plausibility of integrating two-photon polymerization (TPP) with nanoimprinting for direct, digital nanomanufacturing. TPP offers manufacturing of nanomolds at a low cost, while the nanoimprinting process using the nanomolds enables massively parallel printing of nanostructures. A Ti:sapphire femtosecond laser (800 nm wavelength, 100 fs pulse width, at a repetition rate of 80 MHz) was used to induce TPP in dipentaerythritol pentaacrylate to fabricate the nanoimprinting mold with 400 nm wide line array on a glass substrate. The mold surface was silanized by tridecafuoro-1,1,2,2-tetrahydrooctyl-1 trichlorosilane to facilitate the detachment of the mold from the imprinted material. This mold was then used to imprint poly(ethylene glycol) diacrylate (PEGDA). PEGDA is an important biomaterial for many applications such as tissue scaffolds for cell growth. A spectrophotometer and a scanning electron microscope were used to characterize the materials and nanostructures.

1.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
, 1995, “
Imprint of Sub-25 nm Vias and Trenches in Polymers
,”
Appl. Phys. Lett.
0003-6951,
67
(
21
), pp.
3114
3116
.
2.
Stewart
,
M. D.
,
Johnson
,
S. C.
,
Sreenivasan
,
S. V.
,
Resnick
,
D. J.
, and
Willson
,
C. G.
, 2005, “
Nanofabrication With Step and Flash Imprint Lithography
,”
J. Microlithogr., Microfabr., Microsyst.
1537-1646,
4
(
1
), p.
011002
.
3.
Bailey
,
T.
,
Choi
,
B. J.
,
Colburn
,
M.
,
Meissl
,
M.
,
Shaya
,
S.
,
Ekerdt
,
J. G.
,
Sreenivasan
,
S. V.
, and
Willson
,
C. G.
, 2000, “
Step and Flash Imprint Lithography: Template Surface Treatment and Defect Analysis
,”
J. Vac. Sci. Technol. B
1071-1023,
18
(
6
), pp.
3572
3577
.
4.
Kim
,
S. H.
,
Lee
,
K. D.
,
Kim
,
J. Y.
,
Kwon
,
M. K.
, and
Park
,
S. J.
, 2007, “
Fabrication of Photonic Crystal Structures on Light Emitting Diodes by Nanoimprint Lithography
,”
Nanotechnology
0957-4484,
18
(
5
), p.
055306
.
5.
Wu
,
S.
,
Han
,
L. H.
, and
Chen
,
S.
, 2009, “
Three Dimensional Selective Growth of Nanoparticles on a Polymer Microstructure
,”
Nanotechnology
0957-4484,
20
(
1–4
), p.
285312
.
6.
Ahn
,
S. W.
,
Lee
,
K. D.
,
Kim
,
J. S.
,
Kim
,
S. H.
,
Park
,
J. D.
,
Lee
,
S. H.
, and
Yoon
,
P. W.
, 2005, “
Fabrication of a 50 nm Half-Pitch Wire Grid Polarizer Using Nanoimprint Lithography
,”
Nanotechnology
0957-4484,
16
(
9
), pp.
1874
1877
.
7.
Konijn
,
M.
,
Alkaisi
,
M. M.
, and
Blaikie
,
R. J.
, 2005, “
Nanoimprint Lithography of Sub-100 nm 3D Structures
,”
Microelectron. Eng.
0167-9317,
78–79
, pp.
653
658
.
8.
Pina-Hernandez
,
C.
,
Fu
,
P. F.
, and
Guo
,
L. J.
, 2008, “
Easy Duplication of Stamps Using UV-Cured Fluoro-Silsesquioxane for Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
1071-1023,
26
(
6
), pp.
2426
2429
.
9.
Khang
,
D. Y.
, and
Lee
,
H. H.
, 2004, “
Sub-100 nm Patterning With an Amorphous Fluoropolymer Mold
,”
Langmuir
0743-7463,
20
(
6
), pp.
2445
2448
.
10.
Qiu
,
J.
,
Teichman
,
J. M.
,
Kuranov
,
R. V.
,
McElroy
,
A. B.
,
Wang
,
T.
,
Paranjape
,
A. S.
, and
Milner
,
T. E.
, 2009, “
Near Infrared Femtosecond Laser Ablation of Urinary Calculi in Water
,”
Proc. SPIE
0277-786X,
7203
, p.
720309
.
11.
Serbin
,
J.
,
Egbert
,
A.
,
Ostendorf
,
A.
,
Chichkov
,
B. N.
,
Houbertz
,
R.
,
Domann
,
G.
,
Schulz
,
J.
,
Cronauer
,
C.
,
Fröhlich
,
L.
, and
Popall
,
M.
, 2003, “
Femtosecond Laser-Induced Two-Photon Polymerization of Inorganic-Organic Hybrid Materials for Applications in Photonics
,”
Opt. Lett.
0146-9592,
28
(
5
), pp.
301
303
.
12.
Xing
,
J. F.
,
Dong
,
X. Z.
,
Chen
,
W. Q.
,
Duan
,
X. M.
,
Takeyasu
,
N.
,
Tanaka
,
T.
, and
Kawata
,
S.
, 2007, “
Improving Spatial Resolution of Two-Photon Microfabrication by Using Photoinitiator With High Initiating Efficiency
,”
Appl. Phys. Lett.
0003-6951,
90
(
13
), p.
131106
.
13.
Murooka
,
K.
,
Hattori
,
K.
, and
Iizuka
,
O.
, 2003, “
Initial Results of a 50 kV Electron Beam Writer EBM-4000 for a 90 nm Node Photomask
,”
J. Vac. Sci. Technol. B
1071-1023,
21
(
6
), pp.
2668
2671
.
14.
Han
,
L. H.
,
Mapili
,
G.
,
Chen
,
S.
, and
Roy
,
K.
, 2008, “
Projection Microfabrication of Three-Dimensional Scaffolds for Tissue Engineering
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
2
), p.
021005
.
15.
Moon
,
J. J.
,
Hahn
,
M. S.
,
Kim
,
I.
,
Nsiah
,
B. A.
, and
West
,
J. L.
, 2009, “
Micropatterning of Poly(Ethylene Glycol) Diacrylate Hydrogels With Biomolecules to Regulate and Guide Endothelial Morphogenesis
,”
Tissue Eng.
1076-3279,
15
(
3
), pp.
579
585
.
16.
Curtis
,
A. S. G.
,
Gadegaard
,
N.
,
Dalby
,
M. J.
,
Riehle
,
M. O.
,
Wilkinson
,
C. D. W.
, and
Aitchison
,
G.
, 2004, “
Cells React to Nanoscale Order and Symmetry in Their Surroundings
,”
IEEE Trans. Nanobiosci.
1536-1241,
3
(
1
), pp.
61
65
.
17.
Fozdar
,
D. Y.
,
Zhang
,
W.
,
Palard
,
M.
,
Patrick
,
C.
, and
Chen
,
S.
, 2008, “
Flash Imprint Lithography Using a Mask Aligner: A Method for Printing Nanostructures in Photosensitive Hydrogels
,”
Nanotechnology
0957-4484,
19
(
21
), p.
215303
.
18.
McDonald
,
J. C.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H. K.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
, 2000, “
Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)
,”
Electrophoresis
0173-0835,
21
(
1
), pp.
27
40
.
19.
Rolland
,
J. P.
,
Van Dam
,
R. M.
,
Schorzman
,
D. A.
,
Quake
,
S. R.
, and
DeSimone
,
J. M.
, 2004, “
Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication
,”
J. Am. Chem. Soc.
0002-7863,
126
(
8
), pp.
2322
2323
.
20.
Rolland
,
J. P.
,
Hagberg
,
E. C.
,
Denison
,
G. M.
,
Carter
,
K. R.
, and
De Simone
,
J. M.
, 2004, “
High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies
,”
Angew. Chem., Int. Ed.
1433-7851,
43
(
43
), pp.
5796
5799
.
You do not currently have access to this content.