We present an overview of four types of imaging artifacts that can occur during characterization of sharp sample topographies with intermittent contact atomic force microscopy (AFM) when using short nanotube probes (<100nm in length). We discuss the causes behind these artifacts, as well as their implications in the context of nanomanufacturing, and explore theoretically their mitigation using AFM techniques that can perform simultaneous imaging and spectroscopy. In particular, we focus on the experimentally validated spectral inversion method [Stark et al., 2002, “Inverting Dynamic Force Microscopy: From Signals to Time-Resolved Interaction Forces,” Proc. Natl. Acad. Sci. U.S.A., 99, pp. 8473–8478; Sahin et al., 2007, “An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces,” Nat. Nanotechnol., 2, pp. 507–514] and on a recently proposed dual-frequency-modulation method [Chawla and Solares, 2009, “Single-Cantilever Dual-Frequency-Modulation Atomic Force Microscopy,” Meas. Sci. Technol., 20, p. 015501], which has been demonstrated within computational simulations and is under experimental implementation in our laboratory. We discuss the capabilities and limitations of each of these approaches as well as possible areas of future development.

1.
Binnig
,
G.
, 1988, “
Atomic Force Microscope and Method for Imaging Surfaces With Atomic Resolution
,” U.S. Patent No. 4,724,318.
2.
Giessibl
,
F. J.
, 2003, “
Advances in Atomic Force Microscopy
,”
Rev. Mod. Phys.
0034-6861,
75
, pp.
949
983
.
3.
Tay
,
A. B. H.
, and
Thong
,
J. T. L.
, 2004, “
Fabrication of Super-Sharp Nanowire Atomic Force Microscope Probes Using a Field Emission Induced Growth Technique
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
3248
3255
.
4.
Wade
,
L. A.
,
Shapiro
,
I. R.
,
Ma
,
Z.
,
Quake
,
S. R.
, and
Collier
,
C. P.
, 2004, “
Correlating AFM Probe Morphology to Image Resolution for Single-Walled Carbon Nanotube Tips
,”
Nano Lett.
1530-6984,
4
, pp.
725
731
.
5.
García
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
0167-5729,
47
, pp.
197
301
.
6.
Hafner
,
J. H.
,
Cheung
,
C. L.
,
Woolley
,
A. T.
, and
Lieber
,
C. M.
, 2001, “
Structural and Functional Imaging With Carbon Nanotube AFM Probes
,”
Prog. Biophys. Mol. Biol.
0079-6107,
77
, pp.
73
110
.
7.
Shapiro
,
I. R.
,
Solares
,
S. D.
,
Esplandiu
,
M. J.
,
Wade
,
L. A.
,
Goddard
,
W. A.
, and
Collier
,
C. P.
, 2004, “
Influence of Elastic Deformation on Single-Wall Carbon Nanotube Atomic Force Microscopy Probe Resolution
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
13613
13618
.
8.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J. Y.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
9.
Hugel
,
T.
,
Holland
,
N. B.
,
Cattani
,
A.
,
Moroder
,
L.
,
Seitz
,
M.
, and
Gaub
,
H. E.
, 2002, “
Single-Molecule Optomechanical Cycle
,”
Science
0036-8075,
296
, pp.
1103
1106
.
10.
Lee
,
K. L.
,
Abraham
,
D. W.
,
Secord
,
F.
, and
Landstein
,
L.
, 1991, “
Submicron Si Trench Profiling With an Electron-Beam Fabricated Atomic Force Microscope Tip
,”
J. Vac. Sci. Technol.
0022-5355,
9
, pp.
3562
3568
.
11.
Patil
,
S.
,
Martinez
,
N. F.
,
Lozano
,
J. R.
, and
Garcia
,
R.
, 2007, “
Force Microscopy Imaging of Individual Protein Molecules With Sub-Pico Newton Force Sensitivity
,”
J. Mol. Recognit.
0952-3499,
20
, pp.
516
523
.
12.
Proksch
,
R.
, 2006, “
Multifrequency, Repulsive-Mode Amplitude-Modulated Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
113121
.
13.
Sahin
,
O.
,
Magonov
,
S.
,
Su
,
C. M.
,
Quate
,
C. F.
, and
Solgaard
,
O.
, 2007, “
An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
507
514
.
14.
Sboros
,
V.
,
Glynos
,
E.
,
Pye
,
S. D.
,
Moran
,
C. M.
,
Butler
,
M.
,
Ross
,
J. A.
,
McDicken
,
W. N.
, and
Koustos
,
V.
, 2007, “
Nanomechanical Probing of Microbubbles Using the Atomic Force Microscope
,”
Ultrasonics
0041-624X,
46
, pp.
349
354
.
15.
Hofer
,
W. A.
,
Foster
,
A. S.
, and
Shluger
,
A. L.
, 2003, “
Theories of Scanning Probe Microscopes at the Atomic Scale
,”
Rev. Mod. Phys.
0034-6861,
75
, pp.
1287
1331
.
16.
Hembacher
,
S.
,
Giessibl
,
F. J.
, and
Mannhart
,
J.
, 2004, “
Force Microscopy With Light-Atom Probes
,”
Science
0036-8075,
305
, pp.
380
383
.
17.
Davies
,
E.
,
Teng
,
K. S.
,
Conlan
,
R. S.
, and
Wilks
,
S. P.
, 2005, “
Ultra-High Resolution Imaging of DNA and Nucleosomes Using Non-Contact Atomic Force Microscopy
,”
FEBS Lett.
0014-5793,
579
, pp.
1702
1706
.
18.
Sahin
,
O.
, 2008, “
Accessing Time-Varying Forces on the Vibrating Tip of the Dynamic Atomic Force Microscope to Map Material Composition
,”
Isr. J. Chem.
0021-2148,
48
, pp.
55
63
.
19.
Wong
,
S. S.
,
Harper
,
J. D.
,
Lansbury
,
P. T.
, and
Lieber
,
C. M.
, 1998, “
Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems
,”
J. Am. Chem. Soc.
0002-7863,
120
, pp.
603
604
.
20.
Dai
,
H. J.
,
Hafner
,
J. H.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1996, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature (London)
0028-0836,
384
, pp.
147
150
.
21.
Frisbie
,
C. D.
,
Rozsnyai
,
L. F.
,
Noy
,
A.
,
Wrighton
,
M. S.
, and
Lieber
,
C. M.
, 1994, “
Functional Group Imaging by Chemical Force Microscopy
,”
Science
0036-8075,
265
, pp.
2071
2074
.
22.
Wong
,
S. S.
,
Joselevich
,
E.
,
Woolley
,
A. T.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
, 1998, “
Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology
,”
Nature (London)
0028-0836,
394
, pp.
52
55
.
23.
Junno
,
T.
,
Deppert
,
K.
,
Montelius
,
L.
, and
Samuelson
,
L.
, 1995, “
Controlled Manipulation of Nanoparticles With an Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
3627
3629
.
24.
Requicha
,
A. A. G.
, 2003, “
Nanorobots, NEMS, and Nanoassembly
,”
Proc. IEEE
0018-9219,
91
, pp.
1922
1933
.
25.
Mokaberi
,
B.
, and
Requicha
,
A. A. G.
, 2006, “
Drift Compensation For Automatic Nanomanipulation With Scanning Probe Microscopes
,”
IEEE Trans. Autom. Sci. Eng.
,
3
, pp.
199
207
.
26.
Chen
,
H. P.
,
Xi
,
N.
, and
Li
,
G. Y.
, 2006, “
CAD-Guided Automated Nanoassembly Using Atomic Force Microscopy-Based Nonrobotics
,”
IEEE Trans. Autom. Sci. Eng.
,
3
, pp.
208
217
.
27.
Vogl
,
W.
,
Ma
,
B. K. L.
, and
Sitti
,
M.
, 2006, “
Augmented Reality User Interface for an Atomic Force Micro Scope-Based Nanorobotic System
,”
IEEE Trans. Nanotechnol.
1536-125X,
5
, pp.
397
406
.
28.
Stevens
,
R. M.
,
Nguyen
,
C. V.
, and
Meyyappan
,
M.
, 2004, “
Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment
,”
IEEE Trans. Nanobiosci.
1536-1241,
3
, pp.
56
60
.
29.
Nguyen
,
C. V.
,
Chao
,
K. J.
,
Stevens
,
R. M. D.
,
Delzeit
,
L.
,
Cassell
,
A.
,
Han
,
J.
, and
Meyyappan
,
M.
, 2001, “
Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science in Semiconductors
,”
Nanotechnology
0957-4484,
12
, pp.
363
367
.
30.
Nagy
,
G.
,
Levy
,
M.
,
Scarmozzino
,
R.
,
Osgood
,
R. M.
,
Dai
,
H.
,
Smalley
,
R. E.
,
Michaels
,
C. A.
,
Flynn
,
G. W.
, and
McLane
,
G. F.
, 1998, “
Carbon Nanotube Tipped Atomic Force Microscopy for Measurement of <100 nm Etch Morphology on Semiconductors
,”
Appl. Phys. Lett.
0003-6951,
73
, pp.
529
531
.
31.
Stevens
,
R. M. D.
,
Frederick
,
N. A.
,
Smith
,
B. L.
,
Morse
,
D. E.
,
Stucky
,
G. D.
, and
Hansma
,
P. K.
, 2000, “
Carbon Nanotubes as Probes for Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
11
, pp.
1
5
.
32.
Chen
,
L. W.
,
Cheung
,
C. L.
,
Ashby
,
P. D.
, and
Lieber
,
C. M.
, 2004, “
Single-Walled Carbon Nanotube AFM Probes: Optimal Imaging Resolution of Nanoclusters and Biomolecules in Ambient and Fluid Environments
,”
Nano Lett.
1530-6984,
4
, pp.
1725
1731
.
33.
Wong
,
S. S.
,
Woolley
,
A. T.
,
Odom
,
T. W.
,
Huang
,
J. L.
,
Kim
,
P.
,
Vezenov
,
D. V.
, and
Lieber
,
C. M.
, 1998, “
Single-Walled Carbon Nanotube Probes for High-Resolution Nanostructure Imaging
,”
Appl. Phys. Lett.
0003-6951,
73
, pp.
3465
3467
.
34.
Nguyen
,
C. V.
,
So
,
C.
,
Stevens
,
R.
,
Li
,
Y.
,
Delziet
,
L.
,
Sarrazin
,
P.
, and
Meyyappan
,
M.
, 2004, “
High Lateral Resolution Imaging With Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
2816
2821
.
35.
Solares
,
S. D.
, 2008, “
Characterization of Deep Nanoscale Surface Trenches With AFM Using Thin Carbon Nanotube Probes in Amplitude-Modulation and Frequency-Force-Modulation Modes
,”
Meas. Sci. Technol.
0957-0233,
19
, p.
015503
.
36.
Wong
,
S. S.
,
Woolley
,
A. T.
,
Joselevich
,
E.
, and
Lieber
,
C. M.
, 1999, “
Functionalization of Carbon Nanotube AFM Probes Using Tip-Activated Gases
,”
Chem. Phys. Lett.
0009-2614,
306
, pp.
219
225
.
37.
Bernard
,
C.
,
Marsaudon
,
S.
,
Boisgard
,
R.
, and
Aime
,
J. P.
, 2008, “
Competition of Elastic and Adhesive Properties of Carbon Nanotubes Anchored to Atomic Force Microscopy Tips
,”
Nanotechnology
0957-4484,
19
, p.
035709
.
38.
Dietzel
,
D.
,
Faucher
,
M.
,
Iaia
,
A.
,
Aime
,
J. P.
,
Marsaudon
,
S.
,
Bonnot
,
A. M.
,
Bouchiat
,
V.
, and
Couturier
,
G.
, 2005, “
Analysis of Mechanical Properties of Single Wall Carbon Nanotubes Fixed at a Tip Apex by Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
16
, pp.
S73
S78
.
39.
Dietzel
,
D.
,
Marsaudon
,
S.
,
Aime
,
J. P.
,
Nguyen
,
C. V.
, and
Couturier
,
G.
, 2005, “
Mechanical Properties of a Carbon Nanotube Fixed at a Tip Apex: A Frequency-Modulated Atomic Force Microscopy Study
,”
Phys. Rev. B
0163-1829,
72
(
22
), p.
035445
.
40.
Strus
,
M. C.
, and
Raman
,
A.
, 2009, “
Identification of Multiple Oscillation States of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces in Dynamic Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
80
(
47
), pp.
224105
.
41.
Buchoux
,
J.
,
Aime
,
J. P.
,
Boisgard
,
R.
,
Nguyen
,
C. V.
,
Buchaillot
,
L.
, and
Marsaudon
,
S.
, 2009, “
Investigation of the Carbon Nanotube AFM Tip Contacts: Free Sliding Versus Pinned Contact
,”
Nanotechnology
0957-4484,
20
(
47
), p.
475701
.
42.
Kutana
,
A.
,
Giapis
,
K. P.
,
Chen
,
J. Y.
, and
Collier
,
C. P.
, 2006, “
Amplitude Response of Single-Wall Carbon Nanotube Probes During Tapping Mode Atomic Force Microscopy: Modeling and Experiment
,”
Nano Lett.
1530-6984,
6
, pp.
1669
1673
.
43.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
,
Reifenberger
,
R.
,
Nguyen
,
C. V.
, and
Meyyappan
,
M.
, 2005, “
Complex Dynamics of Carbon Nanotube Probe Tips
,”
Ultramicroscopy
0304-3991,
103
, pp.
95
102
.
44.
Strus
,
M. C.
,
Raman
,
A.
,
Han
,
C. S.
, and
Nguyen
,
C. V.
, 2005, “
Imaging Artefacts in Atomic Force Microscopy With Carbon Nanotube Tips
,”
Nanotechnology
0957-4484,
16
, pp.
2482
2492
.
45.
Solares
,
S. D.
,
Esplandiu
,
M. J.
,
Goddard
,
W. A.
, and
Collier
,
C. P.
, 2005, “
Mechanisms of Single-Walled Carbon Nanotube Probe-Sample Multistability in Tapping-Mode AFM Imaging
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
11493
11500
.
46.
Solares
,
S. D.
,
Matsuda
,
Y.
, and
Goddard
,
W. A.
, 2005, “
Influence of the Carbon Nanotube Probe Tilt Angle on the Effective Probe Stiffness and Image Quality in Tapping-Mode Atomic Force Microscopy
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
16658
16664
.
47.
Mechler
,
A.
,
Kopniczky
,
J.
,
Kokavecz
,
J.
,
Hoel
,
A.
,
Granqvist
,
C. G.
, and
Heszler
,
P.
, 2005, “
Anomalies in Nanostructure Size Measurements by AFM
,”
Phys. Rev. B
0163-1829,
72
(
12
), pp.
125407
.
48.
Akita
,
S.
,
Nishijima
,
H.
, and
Nakayama
,
Y.
, 2000, “
Influence of Stiffness of Carbon-Nanotube Probes in Atomic Force Microscopy
,”
J. Phys.
,
33
, pp.
2673
2677
.
49.
Dahlen
,
G.
,
Osborn
,
M.
,
Okulan
,
N.
,
Foreman
,
W.
,
Chand
,
A.
, and
Foucher
,
J.
, 2005, “
Tip Characterization and Surface Reconstruction of Complex Structures With Critical Dimension Atomic Force Microscopy
,”
J. Vac. Sci. Technol. B
1071-1023,
23
, pp.
2297
2303
.
50.
Stifter
,
M.
,
Marti
,
O.
, and
Bhushan
,
B.
, 2000, “
Theoretical Investigation of the Distance Dependence of Capillary and Van Der Waals Forces in Scanning Force Microscopy
,”
Phys. Rev. B
0163-1829,
62
, pp.
13667
13673
.
51.
Jang
,
J. K.
,
Schatz
,
G. C.
, and
Ratner
,
M. A.
, 2004, “
Capillary Force in Atomic Force Microscopy
,”
J. Chem. Phys.
0021-9606,
120
, pp.
1157
1160
.
52.
Jang
,
J. Y.
,
Ratner
,
M. A.
, and
Schatz
,
G. C.
, 2006, “
Atomic-Scale Roughness on Capillary Force in Atomic Force Microscopy
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
659
662
.
53.
Cleveland
,
J. P.
,
Anczykowski
,
B.
,
Schmid
,
A. E.
, and
Elings
,
V. B.
, 1998, “
Energy Dissipation in Tapping-Mode Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
72
, pp.
2613
2615
.
54.
Anczykowski
,
B.
,
Gotsmann
,
B.
,
Fuchs
,
H.
,
Cleveland
,
J. P.
, and
Elings
,
V. B.
, 1999, “
How to Measure Energy Dissipation in Dynamic Mode Atomic Force Microscopy
,”
Appl. Surf. Sci.
0169-4332,
140
, pp.
376
382
.
55.
Solares
,
S. D.
, and
Chawla
,
G.
, 2008, “
Dual Frequency Modulation With Two Cantilevers in Series: A Possible Means to Rapidly Acquire Tip–Sample Interaction Force Curves With Dynamic AFM
,”
Meas. Sci. Technol.
0957-0233,
19
, p.
055502
.
56.
Legleiter
,
J.
,
Park
,
M.
,
Cusick
,
B.
, and
Kowalewski
,
T.
, 2006, “
Scanning Probe Acceleration Microscopy (SPAM) in Fluids: Mapping Mechanical Properties of Surfaces at the Nanoscale
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
, pp.
4813
4818
.
57.
Stark
,
M.
,
Stark
,
R. W.
,
Heckl
,
W. M.
, and
Guckenberger
,
R.
, 2002, “
Inverting Dynamic Force Microscopy: From Signals to Time-Resolved Interaction Forces
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
8473
8478
.
58.
Burnham
,
N. A.
, and
Colton
,
R. J.
, 1989, “
Measuring the Nanomechanical Properties and Surface Forces of Materials Using an Atomic Force Microscope
,”
J. Vac. Sci. Technol. A
0734-2101,
7
, pp.
2906
2913
.
59.
Hölscher
,
H.
, 2006, “
Quantitative Measurement of Tip-Sample Interactions in Amplitude Modulation Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
89
(
), p.
123109
.
60.
Hölscher
,
H.
,
Langkat
,
S. M.
,
Schwarz
,
A.
, and
Wiesendanger
,
R.
, 2002, “
Measurement of Three-Dimensional Force Fields With Atomic Resolution Using Dynamic Force Spectroscopy
,”
Appl. Phys. Lett.
0003-6951,
81
(
23
), pp.
4428
4430
.
61.
Hölscher
,
H.
,
Schwarz
,
A.
,
Allers
,
W.
,
Schwarz
,
U. D.
, and
Wiesendanger
,
R.
, 2000, “
Quantitative Analysis of Dynamic-Force-Spectroscopy Data on Graphite(0001) in the Contact and Noncontact Regimes
,”
Phys. Rev. B
0163-1829,
61
, pp.
12678
12681
.
62.
Hu
,
S.
, and
Raman
,
A.
, 2008, “
Inverting Amplitude and phase to Reconstruct Tip–Sample Interaction Forces in Tapping Mode Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
19
(
), pp.
375704
.
63.
Lantz
,
M. A.
,
Hug
,
H. J.
,
Hoffmann
,
R.
,
van Schendel
,
P. J. A.
,
Kappenberger
,
P.
,
Martin
,
S.
,
Baratoff
,
A.
, and
Güntherodt
,
H. -J.
, 2001, “
Quantitative Measurement of Short-Range Chemical Bonding Forces
,”
Science
0036-8075,
291
, pp.
2580
2583
.
64.
Lee
,
M.
, and
Jhe
,
W.
, 2006, “
General Theory of Amplitude-Modulation Atomic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
97
, pp.
036104
.
65.
Schirmeisen
,
A.
,
Wiener
,
D.
, and
Fuchs
,
H.
, 2006, “
Single-Atom Contact Mechanics: From Atomic Scale Energy Barrier to Mechanical Relaxation Hysteresis
,”
Phys. Rev. Lett.
0031-9007,
97
(
13
), pp.
136101
.
66.
Chawla
,
G.
, and
Solares
,
S. D.
, 2009, “
Single-Cantilever Dual-Frequency-Modulation Atomic Force Microscopy
,”
Meas. Sci. Technol.
0957-0233,
20
, p.
015501
.
67.
Solares
,
S. D.
, and
Crone
,
J. C.
, 2007, “
Real-Time Simulation of Isolated Biomolecule Characterization With Frequency and Force Modulation Atomic Force Microscopy
,”
J. Phys. Chem. C
1932-7447,
111
, pp.
10029
10034
.
68.
Solares
,
S. D.
, and
Hölscher
,
H.
, 2010, “
Numerical Analysis of Dynamic Force Spectroscopy Using a Dual-Oscillator Sensor
,”
J. Vac. Sci. Technol. B
1071-1023,
28
, pp.
C4E1
C4E11
.
69.
Solares
,
S. D.
, and
Hölscher
,
H.
, 2010, “
Numerical Analysis of Dynamic Force Spectroscopy Using the Torsional Harmonic Cantilever
,”
Nanotechnology
0957-4484,
21
, p.
075702
.
70.
Albrecht
,
T. R.
,
Grütter
,
P.
,
Horne
,
D.
, and
Rugar
,
D.
, 1991, “
Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity
,”
J. Appl. Phys.
0021-8979,
69
, pp.
668
673
.
71.
Solares
,
S. D.
, 2007, “
Frequency and Force Modulation Atomic Force Microscopy: Low-Impact Tapping-Mode Imaging Without Bistability
,”
Meas. Sci. Technol.
0957-0233,
18
, pp.
L9
L14
.
72.
Solares
,
S. D.
, 2007, “
Eliminating Bistability and Reducing Sample Damage Through Frequency and Amplitude Modulation in Tapping-Mode Atomic Force Microscopy
,”
Meas. Sci. Technol.
0957-0233,
18
, pp.
592
600
.
73.
Schitter
,
G.
, and
Rost
,
M. J.
, 2008, “
Scanning Probe Microscopy at Video-Rate
,”
Mater. Today
1369-7021,
11
, pp.
40
48
.
74.
García
,
R.
, and
San Paulo
,
A.
, 1999, “
Attractive and Repulsive Tip-Sample Interaction Regimes in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
60
, pp.
4961
4967
.
75.
García
,
R.
,
Magerle
,
R.
, and
Perez
,
R.
, 2007, “
Nanoscale Compositional Mapping With Gentle Forces
,”
Nat. Mater.
,
6
, pp.
405
411
.
76.
Martínez
,
N. F.
, and
Garcia
,
R.
, 2006, “
Measuring Phase Shifts and Energy Dissipation With Amplitude Modulation Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
17
, pp.
S167
S172
.
77.
Kawai
,
S.
,
Glatzel
,
T.
,
Koch
,
S.
,
Such
,
B.
,
Baratoff
,
A.
, and
Meyer
,
E.
, 2009, “
Systematic Achievement of Improved Atomic-Scale Contrast via Bimodal Dynamic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
103
(
22
), pp.
220801
.
78.
Gotsmann
,
B.
,
Seidel
,
C.
,
Anczykowski
,
B.
, and
Fuchs
,
H.
, 1999, “
Conservative and Dissipative Tip-Sample Interaction Forces Probed With Dynamic AFM
,”
Phys. Rev. B
0163-1829,
60
, pp.
11051
11061
.
79.
Rabe
,
U.
,
Janser
,
K.
, and
Arnold
,
W.
, 1996, “
Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment
,”
Rev. Sci. Instrum.
0034-6748,
67
, pp.
3281
3293
.
80.
Naitoh
,
Y.
,
Ma
,
Z.
,
Li
,
Y.
,
Kageshima
,
M.
, and
Sugawara
,
Y.
, 2009, “
Atomic Scale Elasticity Mapping of Ge(001) Surface by multifrequency FM-AFM
,”
Presented at the 12th International Conference on Noncontact Atomic Force Microscopy
, New Haven, CT.
81.
Rodríguez
,
T.
, and
Garcia
,
R.
, 2004, “
Compositional Mapping of Surfaces in Atomic Force Microscopy by Excitation of the Second Normal Mode of the Microcantilever
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
449
451
.
You do not currently have access to this content.