In this paper, the fouling of sintered α-alumina membranes by an uncontaminated semisynthetic metalworking fluid (MWF) is addressed. Experimental evidence of the form of flux reduction curves, scanning electron microscope images of the membranes, and MWF particle size measurements is used to identify two fouling mechanisms, pore blocking and partial pore blocking, as the major contributors to flux decline. A probability-based mechanistic model is developed based on the time-dependent particle size distribution and membrane pore sizes. The model is fitted to experimental data from two commonly used membrane pore sizes with good agreement. Partial blocking is shown to be a predominant first step in the pore blocking mechanism in microfiltration of semisynthetic MWFs due to the tortuous nature of the pores present in sintered ceramic membranes.

1.
Mahdi
,
S. M.
, and
Skold
,
R. O.
, 1990, “
Field Testing of a Model Waterbased Metalworking Fluid Designed for Continuous Recycling Using Microfiltration
,”
Lubr. Eng.
0024-7154,
47
, pp.
653
659
.
2.
Mahdi
,
S. M.
, and
Skold
,
R. O.
, 1991, “
Experimental Study of Membrane Filtration for the Recycling of Synthetic Waterbased Metalworking Fluids
,”
Lubr. Eng.
0024-7154,
24
, pp.
389
395
.
3.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
739
745
.
4.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
, 2000, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
746
752
.
5.
.
Rajagopalan
,
N.
,
Rusk
,
T.
, and
Dianovsky
,
M.
, 2004, “
Purification of Semi-synthetic Metalworking Fluids by Microfiltration
,”
Tribology & Lubrication Technology
,
60
, pp.
38
44
.
6.
Zhao
,
F.
,
Urbance
,
M.
, and
Skerlos
,
S.
, 2004, “
Mechanistic Model of Coaxial Microfiltration for Semi-synthetic Metalworking Fluid Microemulsions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
435
444
.
7.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2005, “
Experimental Investigation of Membrane Fouling Due to Microfiltration of Semi-Synthetic Metalworking Fluids
,”
Trans. NAMRI/SME
1047-3025,
33
, pp.
281
288
.
8.
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
, 2007, “
Development of a Novel Metalworking Fluid Engineered for Use With Microfiltration Recycling
,”
ASME J. Tribol.
0742-4787,
129
, pp.
135
142
.
9.
Sokovic
,
M.
, and
Mijanovic
,
K.
, 2001, “
Ecological Aspects of the Cutting Fluids and Its Influence on Quantifiable Parameters of the Cutting Process
,”
J. Mater. Process. Technol.
0924-0136,
109
, pp.
181
189
.
10.
Eastwood
,
J.
, 2002, “
EC Dangerous Preparations Directive—Application to Metalworking Fluids and Ingredients
,”
Ind. Lubr. Tribol.
0036-8792,
54
, pp.
296
301
.
11.
National Institute of Occupational Safety and Health
, 1998, “
Criteria for a Recommended Standard: Occupational Exposure to Metalworking Fluids
,” NIOSH, Publication 98–102, Cincinnati, OH, Chaps. 4 and 5.
12.
Belfort
,
G.
,
Davis
,
R. H.
, and
Zydney
,
A. L.
, 1994, “
The Behavior of Suspensions and Macromolecular Solutions in Cross-Flow Microfiltration
,”
J. Membr. Sci.
0376-7388,
96
, pp.
1
58
.
13.
Arnot
,
T. C.
,
Field
,
R. W.
, and
Koltuniewicz
,
A. B.
, 2000, “
Cross-Flow and Dead-End Microfiltration of Oily-Water Emulsions Part II. Mechanisms and Modeling of Flux Decline
,”
J. Membr. Sci.
0376-7388,
169
, pp.
1
15
.
14.
Rajagopalan
,
N.
,
Boddu
,
V. M.
,
Mishra
,
S.
, and
Kraybill
,
D.
, 1998, “
Pollution Prevention in an Aluminum Grinding Facility
,”
Met. Finish.
0026-0576,
96
, pp.
18
24
.
15.
Starov
,
V.
,
Lloyd
,
D.
,
Filippov
,
A.
, and
Glaser
,
S.
, 2002, “
Sieve Mechanism of Microfiltration Separation
,”
Sep. Purif. Technol.
1383-5866,
26
, pp.
51
59
.
16.
Kosvintsev
,
S.
,
Cumming
,
I.
,
Holdich
,
R.
,
Lloyd
,
D.
, and
Starov
,
V.
, 2004, “
Sieve Mechanism of Microfiltration Separation
,”
Colloids Surf., A
0927-7757,
230
, pp.
167
182
.
17.
2006,
Metalworking Fluids
,
J. P.
Byers
, ed.,
Taylor & Francis
,
Boca Raton, FL
.
18.
1999,
Handbook of Microemulsion Science and Technology
,
P.
Kumar
, and
K. L.
Mittal
, eds.,
Dekker
,
New York
.
19.
1990,
Micellar Solutions and Microemulsions: Structure, Dynamics, and Statistical Thermodynamics
,
S. H.
Chen
, and
R.
Rajagopalan
, eds.,
Springer-Verlag
,
New York
.
20.
Provencher
,
S. W.
, 1982, “
Contin: a General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations
,”
Comput. Phys. Commun.
0010-4655,
27
, pp.
229
242
.
21.
Song
,
L.
, 1998, “
Flux Decline in Cross-flow Microfiltration and Ultrafiltration: Mechanisms and Modeling of Membrane Fouling
,”
J. Membr. Sci.
0376-7388,
139
, pp.
183
200
.
You do not currently have access to this content.