An ideal scaffold should have good mechanical properties and provide a biologically functional implant site. Considering their large surface area, high porosity, and good interconnectivity of pores, electrospun micro-∕nanofibers have good potential as biomimic scaffolds. In this study, various poly(ε-carprolactone) webs consisting of uniaxially oriented micro-∕nanofibers were produced using an electrohydrodynamic process (electrospinning) with a conical electrode and two-axis collector. The oriented fibrous web showed mechanical orthotropic properties, which might be important for designing engineering scaffolds that mimic natural tissues, such as a blood vessel or ligament, which have orthotropic mechanical properties. In addition, the fabricated mats, which were electrospun using computer-assisted design, had good hydrophilic and good cellular behavior compared to a random fiber mat.

1.
Hollister
,
S. J.
, 2005, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
1476-1122,
4
, pp.
518
524
.
2.
Ma
,
Z.
,
Kotaki
,
M.
,
Inai
,
R.
, and
Ramakrishna
,
S.
, 2005, “
Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds
,”
Tissue Eng.
1076-3279,
11
, pp.
101
109
.
3.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, 2002, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
60
, pp.
613
621
.
4.
Liu
,
X.
, and
Ma
,
P. X.
, 2004, “
Polymeric Scaffolds for Bone Tissue Engineering
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
77
486
.
5.
Lutolf
,
M. P.
, and
Hubbell
,
J. A.
, 2005, “
Synthetic Biomaterials as Instructive Extracellular. Microenvironments for Morphogenesis in Tissue Engineering
,”
Nat. Biotechnol.
1087-0156,
23
, pp.
47
55
.
6.
Tuzlakoglu
,
K.
,
Bolgen
,
N.
,
Salgado
,
A. J.
,
Gomes
,
M. E.
,
Piskin
,
E.
, and
Reis
,
R. L.
, 2005, “
Nano- and Micro-Fiber Combined Scaffolds: A New Architecture for Bone Tissue Engineering
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
16
, pp.
1099
1104
.
7.
Kidoaki
,
S.
,
Kwon
,
I. K.
, and
Matsuda
,
T.
, 2005, “
Mesoscopic Spatial Designs of Nano- and Micron-Fiber Meshes for Tissue-Engineering Matrix and Scaffold Based on Newly Devised Multilayering and Mixing Electrospinning Techniques
,”
Biomaterials
0142-9612,
26
, pp.
37
46
.
8.
Huang
,
Z.-M.
,
Zhang
,
Y.-Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2003, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
2223
2253
.
9.
Kim
,
G. H.
, and
Kim
,
W. D.
, 2006, “
Formation of Oriented Nanofibers Using Electrospinning
,”
Appl. Phys. Lett.
0003-6951,
88
,
233101
.
10.
Deitzel
,
J. M.
,
Kleinmeyer
,
J. D.
,
Hirvonen
,
J. K.
, and
Beck Tan
,
N. C.
, 2001, “
Controlled Deposition of Electrospun Poly(Ethylene Oxide) Fibers
,”
Polymer
0032-3861,
42
, pp.
8163
8170
.
11.
Kim
,
G. H.
,
Cho
,
Y.-S.
, and
Kim
,
W. D.
, 2006, “
Stability Analysis for Multi-Jets Electrospinning Process Modified With a Cylindrcial Electrode
,”
Eur. Polym. J.
0014-3057,
42
, pp.
2031
2038
.
12.
Pitt
,
C. G.
, “
Poly-Epsilon-Caprolactone and its Copolymers
,”
Biodegradable Polymers as Drug Delivery Systems
,
Dekker
,
New York
, pp.
71
120
.
13.
Reneker
,
N. C.
, and
Chun
,
I.
, 1996, “
Nanometre Diameter Fibres of Polymer, Produced by Electrospinning.
,”
Nanotechnology
0957-4484,
7
, pp.
216
223
.
14.
Kim
,
G. H.
,
Park
,
J. H.
, and
Han
,
H. S.
, 2006, “
Production of Microsized PMMA Droplets Using Electrospraying With Various Auxiliary Fields
,”
J. Colloid Interface Sci.
0021-9797,
299
, pp.
593
598
.
15.
Wang
,
M.
,
Yu
,
J. H.
,
Kaplan
,
D. L.
, and
Rutledge
,
G. C.
, 2006, “
Production of Sub-Micron Diameter Silk Fibers Under Benign Processing Conditions by Two-Fluid Electrospinning
,”
Macromolecules
0024-9297,
39
, pp.
1102
1107
.
16.
Viggers
,
R. F.
,
Wechezak
,
A. R.
, and
Sauvage
,
L. R.
, 1986, “
An Apparatus to Study the Response of Cultured Endothelium to Shear Stress
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
332
337
.
17.
Xu
,
C. Y.
,
Inai
,
R.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2004, “
Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering
,”
Biomaterials
0142-9612,
25
, pp.
877
886
.
18.
Lee
,
C. H.
,
Shin
,
H. J.
,
Cho
,
I. H.
,
Kang
,
Y. M.
,
Kim
,
I. A.
,
Park
,
K. D.
, and
Shin
,
J. W.
, 2005, “
Nanofiber Alignment and Direction of Mechanical Strain Affect the ECM Production of Human ACL Fibroblast
,”
Biomaterials
0142-9612,
26
, pp.
1261
1270
.
You do not currently have access to this content.