The finite element analysis of cold flat rolling has been carried out by a number of researchers using updated Lagrangian and flow formulations. The major difficulty in the flow formulation is the estimation of hydrostatic stress accurately. In this work, a mixed pressure-velocity finite element flow formulation is used in obtaining the velocity field during the rolling process. The hydrostatic stress is obtained by solving the momentum equations using a finite difference method. The values of Levy–Mises coefficient and strain-rate components required in the finite difference equations are obtained as a function of spatial coordinates using a radial basis function neural network modeling. The proposed method is compared with a mixed pressure-velocity finite element method and experimental results available in the literature. It is observed that the proposed method provides a better agreement with the experimental results.

1.
Orowan
,
E.
, 1943, “
The Calculation of Roll Pressure in Hot and Cold Flat Rolling
,”
Proc. Inst. Mech. Eng.
0020-3483,
150
, pp.
140
167
.
2.
Bland
,
D. R.
, and
Ford
,
H.
, 1948, “
The Calculation of Roll Force and Torque in Cold Strip Rolling With Tensions
,”
Proc. Inst. Mech. Eng.
0020-3483,
159
, pp.
144
153
.
3.
Avitzur
,
B.
, 1964, “
An Upper Bound Approach to Cold Strip Rolling
,”
Trans. ASME, Ser. B
0022-0817,
86
, pp.
31
48
.
4.
Johnson
,
W.
, and
Kudo
,
H.
, 1960, “
The Use of Upper Bound Solutions for the Determination of Temperature Distribution in Fast Hot Rolling and Axi-Symmetric Extrusion Processes
,”
Int. J. Mech. Sci.
0020-7403,
1
, pp.
175
191
.
5.
Firbank
,
T. C.
, and
Lankaster
,
P. R.
, 1965, “
A Suggested Slip-Line Field for Cold Rolling With Slipping Friction
,”
Int. J. Mech. Sci.
0020-7403,
7
, pp.
847
852
.
6.
Collins
,
I. F.
, 1969, “
Slipline Field Solutions for Compression and Rolling With Slipping Friction
,”
Int. J. Mech. Sci.
0020-7403,
11
, pp.
971
978
.
7.
Liu
,
C.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. E.
, 1985, “
Elastic-Plastic Finite Element Modeling of Cold Rolling of Strip
,”
Int. J. Mech. Sci.
0020-7403,
27
, pp.
531
541
.
8.
Lee
,
J. D.
, 1998, “
A Large-Strain Elastic-Plastic Finite Element Analysis of Rolling Process
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
161
, pp.
315
347
.
9.
Zienkiwicz
,
O. C.
,
Jain
,
P. C.
, and
Onate
,
E.
, 1978, “
Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
15
38
.
10.
Mori
,
K.
,
Oskada
,
K.
, and
Oda
,
T.
, 1982, “
Simulation of Plane-Strain Rolling by Rigid-Plastic Finite Element Method
,”
Int. J. Mech. Sci.
0020-7403,
24
, pp.
519
527
.
11.
Li
,
G. J.
, and
Kobayashi
,
S.
, 1982, “
Rigid Plastic Finite Element Analysis of Plane Strain Rolling
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
55
64
.
12.
Dixit
,
U. S.
, and
Dixit
,
P. M.
, 1996, “
A Finite Element Analysis of Flat Rolling and Applications of Fuzzy Set Theory
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
, pp.
947
969
.
13.
Reddy
,
J. N.
, 2006,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
14.
Shida
,
S.
, and
Awazuhara
,
H.
, 1973, “
Rolling Load and Torque in Cold Rolling
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
14
, pp.
267
278
.
15.
Reddy
,
N. V.
,
Dixit
,
P. M.
, and
Lal
,
G. K.
, 1996, “
Central Bursting and Optimal Die Profile for Axisymmetric Extrusion
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
579
584
.
16.
Maniatty
,
A. M.
, 1994, “
Predicting Residual Stresses in Steady-State Forming Processes
,”
Comput. Syst. Eng.
0956-0521,
5
, pp.
171
177
.
17.
Hashemolhosseini
,
H.
,
Dalayeli
,
H.
, and
Farzin
,
M.
, 2002, “
Correction of Hydrostatic Pressure Obtained by Finite Element Flow Formulation Using Moving Least Square Method
,”
J. Mater. Process. Technol.
0924-0136,
125–126
, pp.
588
593
.
18.
Chakrabarty
,
J.
, 1998,
Theory of Plasticity
,
McGraw-Hill
,
Singapore
.
19.
Hitchcock
,
H.
, 1935,
Roll Neck Bearings
,
ASME
,
New York
, Appendix I.
20.
Ham
,
F.
, and
Kostanic
,
I.
, 2001,
Principles of Neurocomputing for Science and Engineering
,
McGraw-Hill
,
New York
.
21.
Haykin
,
S.
, 1996,
Adaptive Filter Theory
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Dixit
,
U. S.
, 1997, “
Cold Flat Rolling: Modeling With Fuzzy Parameters, Anisotropic Effects and Residual Stresses
,” Ph.D. thesis, Indian Institute of Technology, Kanpur.
23.
Al-Salehi
,
F. A. R.
,
Firbank
,
T. C.
, and
Lancaster
,
P. R.
, 1973, “
An Experimental Determination of the Roll Pressure Distributions in Cold Rolling
,”
Int. J. Mech. Sci.
0020-7403,
15
, pp.
693
700
.
24.
Salunkhe
,
M. A.
, 2006, “
Analysis of Cold Flat Asymmetric Rolling Process
,” M.Tech. thesis, Indian Institute of Technology, Guwahati.
You do not currently have access to this content.