Tissue engineering combines principles of the life sciences and engineering to replace and repair damaged human tissue. Present tissue engineering methods generally require the use of porous, bioresorbable scaffolds to serve as temporary three-dimensional templates to guide cell attachment, differentiation, proliferation, and subsequent regenerate tissue formation. Such scaffolds are anticipated to play an important role in allowing physicians to simultaneously reconstruct and regenerate damaged human tissues such as bone, cartilage, ligament, and tendon. Recent research strongly suggests that the choice of scaffold material and its internal porous architecture significantly influence regenerate tissue structure and function. However, a lack of versatile biomaterials processing and manufacturing methods capable of meeting the complex geometric and compositional requirements of tissue engineering scaffolds has slowed progress towards fully testing these promising findings. It is widely accepted that layered manufacturing methods such as selective laser sintering (SLS) have the potential to address these requirements. We have investigated SLS as a technique to fabricate tissue engineering scaffolds composed of polycaprolactone (PCL), one of the most widely investigated biocompatible, bioresorbable materials for tissue engineering applications. In this article, we report on our development of optimal SLS processing parameters for CAPA® 6501 PCL powder using systematic factorial design of experiments. Using the optimal parameters, we manufactured test scaffolds with designed porous channels and achieved dimensional accuracy to within 3%–8% of design specifications and densities approximately 94% relative to full density. Finally, using the optimal SLS process parameters, we demonstrated the successful fabrication of bone tissue engineering scaffolds based on actual minipig and human condyle scaffold designs.

1.
Langer
,
R.
, and
Vacanti
,
P. J.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
2.
Griffith
,
L. G.
, and
Naughton
,
G.
, 2002, “
Tissue Engineering—Current Challenges and Expanding Opportunities
,”
Science
0036-8075,
295
(
5557
), pp.
1009
1014
.
3.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, 2001, “
The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors
,”
Tissue Eng.
1076-3279,
7
(
6
), pp.
679
689
.
4.
Hollister
,
S. J.
,
Lin
,
C. Y.
,
Lin
,
C. Y.
,
Schek
,
R. D.
,
Taboas
,
J. M.
,
Flanagan
,
C. L.
,
Saito
,
E.
,
Williams
,
J. M.
,
Das
,
S.
,
Wirtz
,
T.
, and
Krebsbach
,
P. H.
, 2004, “
Design and Fabrication of Scaffolds for Anatomic Bone Reconstruction
,”
Med. J. Malaysia
0300-5283,
59 Suppl B
, pp.
131
132
.
5.
Das
,
S.
, and
Hollister
,
S. J.
, 2001, “
Tissue Engineering Scaffolds
,”
Buschow
,
K. H. J.
,
Cahn
,
R. W.
,
Flemings
,
M. C.
,
Ilschner
,
B.
,
Kramer
,
E. J.
, and
Mahajan
,
S.
, eds.,
Encyclopedia of Materials: Science and Technology
,
Elsevier
, Amsterdam.
6.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
, 2002, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
0142-9612,
23
(
20
), pp.
4095
4103
.
7.
Hollister
,
S. J.
,
Lin
,
C. Y.
,
Saito
,
E.
,
Lin
,
C. Y.
,
Schek
,
R. M.
,
Taboas
,
J. M.
,
Williams
,
J. M.
,
Partee
,
B.
,
Flanagan
,
C. L.
,
Diggs
,
A.
,
Wilke
,
E. N.
,
Van Lenthe
,
G. H.
,
Muller
,
R.
,
Wirtz
,
T.
,
Das
,
S.
,
Feinberg
,
S. E.
, and
Krebsbach
,
P. H.
, 2005, “
Engineering Craniofacial Scaffolds
,”
Orthodont. Craniofacial Res.
,
8
(
3
), pp.
162
173
.
8.
Bonassar
,
L. J.
, and
Vacanti
,
C. A.
, 1998, “
Tissue Engineering: The First Decade and Beyond
,”
J. Cell Biochem. Suppl.
0733-1959, Suppl.
30–31
, pp.
297
303
.
9.
Hutmacher
,
D. W.
, 2000, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
0142-9612,
21
(
24
), pp.
2529
2543
.
10.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, 2002, “
The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques
,”
Tissue Eng.
1076-3279,
8
(
1
), pp.
1
11
.
11.
Mikos
,
A. G.
,
Sarakino
,
G.
,
Lyman
,
M. D.
,
Ingber
,
D. E.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1993, “
Prevascularization of Porous Biodegradable Polymers
,”
Biotechnol. Bioeng.
0006-3592,
42
(
6
), pp.
716
723
.
12.
Bruder
,
S. P.
,
Kraus
,
K. H.
,
Goldberg
,
V. M.
, and
Kadiyala
,
S.
, 1998, “
The Effect of Implants Loaded With Autologous Mesenchymal Stem Cells on the Healing of Canine Segmental Bone Defects
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
(
7
), pp.
985
996
.
13.
Sampath
,
T. K.
, and
Reddi
,
A. H.
, 1984, “
Importance of Geometry of the Extracellular Matrix in Endochondral Bone Differentiation
,”
J. Cell Biol.
0021-9525,
98
(
6
), pp.
2192
2197
.
14.
Kuboki
,
Y.
,
Saito
,
T.
,
Murata
,
M.
,
Takita
,
H.
,
Mizuno
,
M.
,
Inoue
,
M.
,
Nagai
,
N.
, and
Poole
,
A. R.
, 1995, “
Two Distinctive BMP-Carriers Induce Zonal Chondrogenesis and Membranous Ossification, Respectively; Geometrical Factors of Matrices for Cell-Differentiation
,”
Connect. Tissue Res.
0300-8207,
32
(
1–4
), pp.
219
226
.
15.
Mahmood
,
J.
,
Takita
,
H.
,
Ojima
,
Y.
,
Kobayashi
,
M.
,
Kohgo
,
T.
, and
Kuboki
,
Y.
, 2001, “
Geometric Effect of Matrix Upon Cell Differentiation: BMP-Induced Osteogenesis Using a New Bioglass with a Feasible Structure
,”
J. Biochem. (Tokyo)
0021-924X,
129
(1), pp.
163
171
.
16.
Kuboki
,
Y.
,
Takita
,
H.
,
Kobayashi
,
D.
,
Tsuruga
,
E.
,
Inoue
,
M.
,
Murata
,
M.
,
Nagai
,
N.
,
Dohi
,
Y.
, and
Ohgushi
,
H.
, 1998, “
BMP-Induced Osteogenesis on the Surface of Hydroxyapatite with Geometrically Feasible and Nonfeasible Structures: Topology of Osteogenesis
,”
J. Biomed. Mater. Res.
0021-9304,
39
(
2
), pp.
190
199
.
17.
Tsuruga
,
E.
,
Takita
,
H.
,
Itoh
,
H.
,
Wakisaka
,
Y.
, and
Kuboki
,
Y.
, 1997, “
Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis
,”
J. Biochem. (Tokyo)
0021-924X,
121
(
2
), pp.
317
324
.
18.
Cima
,
L. G.
,
Vacanti
,
J. P.
,
Vacanti
,
C.
,
Ingber
,
D.
,
Mooney
,
D.
, and
Langer
,
R.
, 1991, “
Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates
,”
J. Biomech. Eng.
0148-0731,
113
(
2
), pp.
143
151
.
19.
Mooney
,
D. J.
,
Baldwin
,
D. F.
,
Suh
,
N. P.
,
Vacanti
,
J. P.
, and
Langer
,
R.
, 1996, “
Novel Approach to Fabricate Porous Sponges of poly(D,L-lactic-co-glycolic acid) Without the Use of Organic Solvents
,”
Biomaterials
0142-9612,
17
(
14
), pp.
1417
1422
.
20.
Taboas
,
J. M.
,
Maddox
,
R. D.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
, 2003, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds
,”
Biomaterials
0142-9612,
24
(
1
), pp.
181
194
.
21.
Hollister
,
S. J.
,
Levy
,
R. A.
,
Chu
,
T. M.
,
Halloran
,
J. W.
, and
Feinberg
,
S. E.
, 2000, “
An Image-Based Approach for Designing and Manufacturing Craniofacial Scaffolds
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
29
(
1
), pp.
67
71
.
22.
Das
,
S.
,
Hollister
,
S. J.
,
Flanagan
,
C.
,
Adewunmi
,
A.
,
Bark
,
K.
,
Chen
,
C.
,
Ramaswamy
,
K.
,
Rose
,
D.
, and
Widjaja
,
E.
, 2003, “
Freeform Fabrication of Nylon-6 Tissue Engineering Scaffolds
,”
Rapid Prototyping J.
1355-2546,
9
(
1
), pp.
43
49
.
23.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
, 1997,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer Academic Publishers
, Boston.
24.
Hutmacher
,
D. W.
, 2001, “
Scaffold Design and Fabrication Technologies for Engineering Tissues–State of the Art Future Perspectives
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
12
(
1
), pp.
107
124
.
25.
Hutmacher
,
D. W.
,
Sittinger
,
M.
, and
Risbud
,
V. M.
, 2004, “
Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems
,”
Trends Biotechnol.
0167-7799,
22
(
7
), pp.
354
362
.
26.
Sachlos
,
E.
, and
Czernuska
,
J. T.
, 2003, “
Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds
,”
Eur. Cells Mater
1473-2262,
5
pp.
29
40
.
27.
Wu
,
B. M.
,
Borland
,
S. W.
,
Giordano
,
R. A.
,
Cima
,
L. G.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1996, “
Solid Free-Form Fabrication of Drug Delivery Devices
,”
J. Controlled Release
0168-3659,
40
(
1–2
), pp.
77
87
.
28.
Giordano
,
R. A.
,
Wu
,
B. M.
,
Borland
,
S. W.
,
Cima
,
L. G.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1996, “
Mechanical Properties of Dense Polylactic Acid Structures Fabricated by Three Dimensional Printing
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
8
(
1
), pp.
63
75
.
29.
Sherwood
,
J. K.
,
Riley
,
S. L.
,
Palazzolo
,
R.
,
Brown
,
S. C.
,
Monkhouse
,
D. C.
,
Coates
,
M.
,
Griffith
,
L. G.
,
Landeen
,
L. K.
, and
Ratcliffe
,
A.
, 2002, “
A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair
,”
Biomaterials
0142-9612,
23
(
24
), pp.
4739
4751
.
30.
Yan
,
Y.
,
Wu
,
R.
,
Zhang
,
R.
,
Xiong
,
Z.
, and
Lin
,
F.
, 2003, “
Biomaterial Forming Research Using RP Technology
,”
Rapid Prototyping J.
1355-2546,
9
(
3
), pp.
142
149
.
31.
Xiong
,
Z.
,
Yan
,
Y.
,
Zhang
,
R.
, and
Sun
,
L.
, 2001, “
Fabrication of Porous poly(-lactic acid) Scaffolds for Bone Tissue Engineering via Precise Extrusion
,”
Scr. Mater.
1359-6462,
45
(
7
), pp.
773
779
.
32.
Xiong
,
Z.
,
Yan
,
Y.
,
Wang
,
S.
,
Zhang
,
R.
, and
Zhang
,
C.
, 2002, “
Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-Temperature Deposition
,”
Scr. Mater.
1359-6462,
46
(
11
), pp.
771
776
.
33.
Wang
,
F.
,
Shor
,
L.
,
Darling
,
A.
,
Sun
,
W.
,
Guceri
,
S.
, and
Lau
,
A.
, 2003, “
Precision Extruding Deposition and Characterization of Cellular poly- ε -caprolactone Tissue Scaffolds
,”
Solid Freeform Fabrication Symposium Proceedings
,
University of Texas
, Austin, Texas.
34.
Cooke
,
M. N.
,
Fisher
,
J. P.
,
Dean
,
D.
,
Rimnac
,
C.
, and
Mikos
,
A. G.
, 2003, “
Use of Stereolithography to Manufacture Critical-Sized 3D Biodegradable Scaffolds for Bone Ingrowth
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
64B
(
2
), pp.
65
69
.
35.
Chu
,
T. -M. G.
,
Halloran
,
J. W.
,
Hollister
,
S. J.
, and
Feinberg
,
S. E.
, 2001, “
Hydroxyapatite Implants with Designed Internal Architecture
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
12
(
6
), pp.
471
478
.
36.
Sodian
,
R.
,
Loebe
,
M.
,
Hein
,
A.
,
Martin
,
D. P.
,
Hoerstrup
,
S. P.
,
Potapov
,
E. V.
,
Hausmann
,
H.
,
Lueth
,
T.
, and
Hetzer
,
R.
, 2002, “
Application of Stereolithography for Scaffold Fabrication for Tissue Engineered Heart Valves
,”
ASAIO J.
1058-2916,
48
(
1
), pp.
12
16
.
37.
Sodian
,
R.
,
Loebe
,
M.
,
Hein
,
A.
,
Lueth
,
T.
,
Martin
,
D. P.
,
Potapov
,
E. V.
,
Knollmann
,
F.
, and
Hetzer
,
R.
, 2000, “
Application of Stereolithography for Scaffold Fabrication for Tissue Engineering of Heart Valves
,”
ASAIO J.
1058-2916: 46th Annual Conference and Exposition of ASAIO, Jun 28–Jul 1 2000,
46
(
2
), p.
238
.
38.
Limpanuphap
,
S.
, and
Derby
,
B.
, 2002, “
Manufacture of Biomaterials by a Novel Printing Process
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
13
(
12
), pp.
1163
1166
.
39.
Wilson
,
C. E.
,
Dhert
,
W. J. A.
,
Van Blitterswijk
,
C. A.
,
Verbout
,
A. J.
, and
De Bruijn
,
J. D.
, 2002, “
Evaluating 3D Bone Tissue Engineered Constructs with Different Seeding Densities Using the alamarBlueTM Assay and the Effect on in vivo Bone Formation
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
13
(
12
), pp.
1265
1269
.
40.
Steidle
,
C.
,
Klosterman
,
D.
,
Graves
,
G.
,
Osborne
,
N.
, and
Chartoff
,
R.
, 1998, “
Automated Fabrication of Nonresorbable Bone Implants Using Laminated Object Manufacturing (LOM)
,”
Solid Freeform Fabrication Symposium Proceedings
,
University of Texas at Austin
.
41.
Deckard
,
C. R.
, 1988, “
Selective Laser Sintering
,” Ph.D. Thesis, University of Texas at Austin, Austin, TX.
42.
Sun
,
M. M.
, 1991, “
Physical Modeling of the Selective Laser Sintering Process
,” Ph.D. Thesis, University of Texas at Austin, Austin, TX.
43.
Lee
,
G.
, 1997, “
Selective Laser Sintering of Calcium Phosphate Materials for Orthopedic Implants
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
44.
Vail
,
N. K.
,
Swain
,
L. D.
,
Fox
,
W. C.
,
Aufdlemorte
,
T. B.
,
Lee
,
G.
, and
Barlow
,
J. W.
, 1999, “
Materials for Biomedical Applications
,”
Mater. Des.
0264-1275,
20
(
2–3
), pp.
123
132
.
45.
Berry
,
E.
,
Brown
,
J. M.
,
Connell
,
M.
,
Craven
,
C. M.
,
Efford
,
N. D.
,
Radjenovic
,
A.
, and
Smith
,
M. A.
, 1997, “
Preliminary Experience with Medical Applications of Rapid Prototyping by Selective Laser Sintering
,”
Med. Eng. Phys.
1350-4533,
19
(
1
), pp.
90
96
.
46.
Rimell
,
J. T.
, and
Marquis
,
P. M.
, 2000, “
Selective Laser Sintering of Ultra High Molecular Weight Polyethylene for Clinical Applications
,”
J. Biomed. Mater. Res.
0021-9304,
52
(
4
), pp.
414
420
.
47.
Shishkovsky
,
I. V.
,
Tarasova
,
E. Yu.
,
Zhuravel
,
L. V.
, and
Petrov
,
A. L.
, 2001, “
The Synthesis of a Biocomposite Based on Nickel Titanium and Hydroxyapatite under Selective Laser Sintering Conditions
,”
Tech. Phys. Lett.
1063-7850,
27
(
3
), pp.
211
213
.
48.
Das
,
S.
,
Hollister
,
S. J.
,
Flanagan
,
C.
,
Adewunmi
,
A.
,
Bark
,
K.
,
Chen
,
C.
,
Ramaswamy
,
K.
,
Rose
,
D.
, and
Widjaja
,
E.
, 2003, “
Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds
,”
Rapid Prototyping Technologies
,
Materials Research Society
, Boston, MA, Vol.
758
, pp.
205
210
.
49.
Low
,
K. H.
,
Leong
,
K. F.
,
Chua
,
C. K.
,
Du
,
Z. H.
, and
Cheah
,
C. M.
, 2001, “
Characterization of SLS Parts for Drug Delivery Devices
,”
Rapid Prototyping J.
1355-2546,
7
(
5
), pp.
262
268
.
50.
Tan
,
K. H.
,
Chua
,
C. K.
,
Leong
,
K. F.
,
Cheah
,
C. M.
,
Cheang
,
P.
,
Abu Bakar
,
M. S.
, and
Cha
,
S. W.
, 2003, “
Scaffold Development Using Selective Laser Sintering of Polyetheretherketone-Hydroxyapatite Biocomposite Blends
,”
Biomaterials
0142-9612,
24
(
18
), pp.
3115
3123
.
51.
Tan
,
K. H.
,
Chua
,
C. K.
,
Leong
,
K. F.
,
Cheah
,
C. M.
,
Gui
,
W. S.
,
Tan
,
W. S.
, and
Wiria
,
F. E.
, 2005, “
Selective Laser Sintering of Biocompatible Polymers for Applications in Tissue Engineering
,”
Biomed. Mater. Eng.
0959-2989,
15
(
1–2
), pp.
113
124
.
52.
Chua
,
C. K.
,
Leong
,
K. F.
,
Tan
,
K. H.
,
Wiria
,
F. E.
, and
Cheah
,
C. M.
, 2004, “
Development of Tissue Scaffolds Using Selective Laser Sintering of Polyvinyl Alcohol/Hydroxyapatite Biocomposite for Craniofacial and Joint Defects
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
15
(
10
), pp.
1113
1121
.
53.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
, 2005, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering
,”
Biomaterials
0142-9612,
26
(
23
), pp.
4817
4827
.
54.
Solvay Caprolactones, 2001, “
Properties & Processing of CAPA® Thermoplastics
,” http://www.solvaycaprolactones.com/http://www.solvaycaprolactones.com/.
55.
Hutmacher
,
D. W.
, 2001, “
Polymers for Medical Applications
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
,
Amsterdam
, pp.
7664
7673
.
56.
Saad
,
B.
, and
Suter
,
U. W.
, 2001, “
Biodegradable Polymeric Materials
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
,
Amsterdam
, pp.
551
555
.
57.
Darney
,
P. D.
,
Monroe
,
S. E.
,
Klaisle
,
C. M.
, and
Alvarado
,
A.
, 1989, “
Clinical Evaluation of the Capronor Contraceptive Implant: Preliminary Report
,”
Am. J. Obstet. Gynecol.
0002-9378,
160
(
5 Pt 2
), pp.
1292
1295
.
58.
Thomson
,
R. C.
,
Wake
,
M. C.
,
Yaszemski
,
M. J.
, and
Mikos
,
A. G.
, 1995, “
Biodegradable Polymer Scaffolds to Regenerate Organs
,”
Advances in Polymer Science: Biopolymers II
,
Springer-Verlag GmbH & Company KG
, Berlin, Germany, Vol.
122
, pp.
245
274
.
59.
DeVor
,
R. E.
,
Chang
,
T.
, and
Sutherland
,
J. W.
, 1992,
Statistical Quality Design and Control: Contemporary Concepts and Methods
,
Prentice-Hall
, Englewood Cliffs, NJ, pp.
543
605
.
You do not currently have access to this content.