A real-time ultrasound-based system for controlling robotic weld quality by monitoring the weld pool is presented. The weld penetration depth is one of the most important geometric parameters that define weld quality, hence, remains a key control quantity. The sensing system is based on using a laser phased array technique to generate focused and steered ultrasound, and an electromagnetic acoustic transducer (EMAT) as a receiver. When a pulsed laser beam is incident on the surface of a condensed matter, either the thermoelastic expansion or ablation induces mechanical vibrations that propagate as ultrasound within the specimen. Both the ultrasound generation by the laser phased array and the reception by the EMAT are noncontact, which eliminates the need for a couplant medium. They are capable of operating at high temperatures involved in the welding process. The ultrasound generated by the laser phased array propagates through the weld pool and is picked up by the EMAT receiver. A signal-processing algorithm based on a cross-correlation technique has been developed to estimate the time-of-flight (TOF) of the ultrasound. The relationship between the TOF and the penetration depth of the weld has been established experimentally and analytically. The analytical relationship between the TOF and the penetration depth, which is obtained by the ray-tracing algorithm and geometric analysis, agrees well with the experimental measurements.

1.
Kou
,
S.
, and
Le
,
Y.
, 1986, “
Welding Parameters and the Grain Structure of Weld Metal: A Thermodynamic Consideration
,”
Metall. Trans. A
0360-2133,
19A
(
4
), pp.
1075
82
.
2.
Savage
,
W.
,
Lundin
,
C.
, and
Aronson
,
A.
, 1965, “
Weld Metal Solidification Mechanics
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
44
, p.
175
.
3.
Placious
,
R.
,
Garrett
,
D.
,
Kasen
,
M.
, and
Berger
,
H.
, 1981, “
Dimensioning Flaws in Pipeline Girth Welds by Radiographic Methods
,”
Mater. Eval.
0025-5327,
39
(
8
), pp.
755
760
.
4.
Rokhlin
,
S.
, 1989, “
In-Process Radiographic Evaluation of Arc Welding
,”
Mater. Eval.
0025-5327,
47
(
2
), pp.
219
224
.
5.
Liao
,
T.
, and
Li
,
Y.
, 1998, “
An Automated Radiographic NDT System for Weld Inspection. II. Flaw Detection
,”
NDT & E Int.
0963-8695,
31
(
3
), pp.
183
192
.
6.
Ditchburn
,
R.
,
Burke
,
S.
, and
Scala
,
C.
, 1996, “
NDT of Welds: State of the Art
,”
NDT & E Int.
0963-8695,
29
(
2
), pp.
111
117
.
7.
Guu
,
A.
, and
Rokhlin
,
S.
, 1992, “
Arc Weld Process Control Using Radiographic Sensing
,”
Mater. Eval.
0025-5327,
50
(
11
), pp.
1344
1348
.
8.
Vorontsov
,
G.
, 1970, “
Automatic In-Process Control of Penetration Depth in Electric Plug Welding
,”
Paton Welding J.
,
23
(
2
), pp.
28
31
.
9.
Richardson
,
R. W.
,
Gutow
,
D. A.
, and
Rao
,
S. H.
, 1982, “
Vision Based System for Arc Weld Pool Size Control
,”
Measurement and Control for Batch Manufacturing
,
ASME
,
New York
, pp.
65
75
.
10.
Nagarajan
,
S.
,
Chen
,
W.
, and
Chin
,
B.
, 1989, “
Infrared Sensing for Adaptive Arc Welding
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
68
(
11
), pp.
462
466
.
11.
Sundell
,
R.
,
Solomon
,
H.
, and
Correa
,
S.
, 1986, “
Minor Element Effects on Gas Tungsten Arc (GTA) Weld Penetration—Weld Pool Physics
,”
Proceedings of an International Conference on Trends in Welding Research
,
S. A.
David
, ed., Gatlinberg, TN, May 18-22,
ASM International
,
Metals Park
, OH, pp.
53
57
.
12.
Chen
,
W.
,
Nagarajan
,
S.
, and
Chin
,
B.
, 1988, “
Weld Penetration Sensing and Control
,”
Proc. SPIE
0277-786X,
972
, pp.
268
272
.
13.
Stroud
,
R.
, 1989, “
Problems and Observations Whilst Dynamically Monitoring Molten Weld Pools Using Ultrasound
,”
Br. J. Non-Destr. Test.
0007-1137,
31
(
1
), pp.
29
32
.
14.
White
,
R.
, 1963, “
Generation of Elastic Waves by Transient Surface Heating
,”
J. Appl. Phys.
0021-8979,
34
(
12
), pp.
3559
3567
.
15.
Carlson
,
N.
, and
Johnson
,
J.
, 1988, “
Ultrasonic Sensing of Weld Pool Penetration
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
67
(
11
), pp.
239
246
.
16.
Carlson
,
N.
,
Johnson
,
J.
,
Lott
,
L.
, and
Kunerth
,
D.
, 1992, “
Ultrasonic NDT Methods for Weld Sensing
,”
Mater. Eval.
0025-5327,
50
(
10
), pp.
1338
1343
.
17.
Oursler
,
D.
, and
Wagner
,
J.
, 1995, “
Narrow-Band Hybrid Pulsed Laser/EMAT System for Noncontact Ultrasonic Inspection Using Angled Shear Waves
,”
Mater. Eval.
0025-5327,
53
(
5
), pp.
593
597
.
18.
Dixon
,
S.
,
Edwards
,
C.
, and
Palmer
,
S.
, 1999, “
A Laser-EMAT System for Ultrasonic Weld Inspection
,”
Ultrasonics
0041-624X,
37
(
4
), pp.
273
281
.
19.
Graham
,
I.
, and
Ume
,
G. M.
, 1997, “
Automated System for Laser Ultrasonic Sensing of Weld Penetration
,”
Mechatronics
0957-4158,
7
(
8
), pp.
711
721
.
20.
Yang
,
J.
,
DeRidder
,
N.
,
Ume
,
C.
, and
Iarzynski
,
J.
, 1993, “
Non-Contact Optical Fibre Phased Array Generation of Ultrasound for Non-Destructive Evaluation of Materials and Processes
,”
Ultrasonics
0041-624X,
31
(
6
), pp.
387
394
.
21.
Hopko
,
S.
, and
Ume
,
I.
, 1999, “
Laser Generated Ultrasound by Material Ablation Using Fiber Optic Delivery
,”
Ultrasonics
0041-624X,
37
(
1
), pp.
1
7
.
22.
Mi
,
B.
, and
Ume
,
I.
, 2004, “
Three-Dimensional Ray Tracing of Laser Ultrasound for Weld Penetration Sensing
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
4
), pp.
1565
1571
.
23.
Aussel
,
J.
, and
Monchalin
,
J.
, 1989, “
Measurement of Ultrasound Attenuation by Laser Ultrasonics
,”
J. Appl. Phys.
0021-8979,
65
(
8
), pp.
2918
2922
.
24.
Hull
,
D.
,
Kautz
,
H.
, and
Vary
,
A.
, 1985, “
Measurement of Ultrasonic Velocity Using Phase-Slope and Cross-Correlation Methods
,”
Mater. Eval.
0025-5327,
43
(
11
), pp.
1455
1460
.
You do not currently have access to this content.