Carbon nanotubes were synthesized in an atmospheric chamber by irradiating a metal-catalyst containing graphite target with a 2 kW continuous wave CO2 laser and capturing the soot in flowing distilled water to facilitate continuous, rapid production. The ablation products, swept away by an argon flow and collected in the distilled water, were further purified to result in a yield of 50%. The growth rate of purified aggregate ranged from 0.5 to 2gh depending on the laser power. Microscopic scanning electron microscopy, atomic force microscopy, transmission electron microscopy and spectroscopic (Raman) methods characterized the purified aggregate as a mixture of individual and bundle of single-wall nanotubes, nanoparticles, clusters, and impurities. Nanotubes accounted for approximately 10% of purified aggregate inferring a maximum production rate of 0.2gh. The average diameter and length of nanotubes were 1.3 nm and 1.5μm, respectively. The major benefits of this technique are absence of vacuum and high-temperature furnace that are associated with the traditional pulsed laser method, and scalability to meet the industrial production levels.

1.
Ebbesen
,
T. W.
, 1994,
Annu. Rev. Mater. Sci.
0084-6600
24
, pp.
235
265
.
2.
Journet
,
C.
, and
Bernier
,
P.
, 1998,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
67
, pp.
1
9
.
4.
Purezky
,
A.
,
Geohegan
,
D. B.
,
Fan
,
X.
, and
Pennycook
,
S. J.
, 2000,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
70
, p.
153
.
5.
Munoz
,
E.
, et al.
, 2000,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
70
, p.
145
.
6.
Gamaly
,
E.
, et al.
, 2000,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
70
, p.
161
.
9.
Duesburg
,
G. S.
,
Muster
,
J.
,
Byrne
,
H. J.
,
Roth
,
S.
, and
Burghard
,
M.
, 1999,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
69
(
3
), pp.
269
274
10.
Durjardin
,
E.
,
Ebbesen
,
T. W.
,
Krishnan
,
A.
, and
Treacy
,
M. M.
, 1998,
Adv. Mater. (Weinheim, Ger.)
0935-9648
10
, p.
611
.
11.
Vaccarini
,
L.
,
Goze
,
C.
,
Aznar
,
R.
,
Micholet
,
V.
,
Journet
,
C.
, and
Bernier
,
P.
, 1999,
Synth. Met.
0379-6779
103
, p.
2492
.
12.
Liu
,
J.
,
Rinzler
,
A. G.
,
Dai
,
H.
,
Hafner
,
J. H.
,
Bradley
,
R. K.
,
Boul
,
P. J.
,
Lu
,
A.
,
Iverson
,
Shelimov
,
K.
,
Huffman
,
C. B.
,
Rodriguez-Macias
,
F.
,
Shon
,
Y.-S.
,
Lee
,
T. R.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1998,
Science
0036-8075
280
, p.
1253
.
13.
Holzinger
,
M.
,
Hirsch
,
A.
,
Bernier
,
P.
,
Duesburg
,
G. S.
, and
Burghard
,
M.
, 2000,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
70
.
14.
Guo
,
T.
,
Nikolaev
,
P.
,
Thess
,
A.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1995,
Chem. Phys. Lett.
0009-2614
243
, p.
49
.
15.
Scott
,
C.
,
Aerpalli
,
S.
,
Nikolaev
,
P.
, and
Smalley
,
R. E.
, 2001,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
72
, p.
573
.
17.
Kong
,
J.
,
Soh
,
H. T.
,
Cassel
,
A. M.
,
Quate
,
C. F.
, and
Dai
,
H.
, 1998,
Nature (London)
0028-0836
395
, p.
878
.
18.
Muster
,
J.
,
Duesburg
,
G. S.
,
Roth
,
S.
, and
Burghard
,
M.
, 1999,
Appl. Phys. A: Mater. Sci. Process.
0947-8396
69
, pp.
199
, 261–267.
19.
Bandow
,
S.
,
Asaka
,
S.
,
Saito
,
Y.
,
Rao
,
A. M.
,
Grogorian
,
L.
,
Richter
,
E.
, and
Eklund
,
P. C.
, 1998,
Phys. Rev. Lett.
0031-9007,
80
, p.
3779
.
You do not currently have access to this content.