With the new emerging technologies of high performance machining and the increasing demand for improved machining accuracy in recent years, the problem of thermal deformation of machine tool structures is becoming more critical than ever. The major problem in implementing real-time control systems is the difficulty of measuring the relative thermal displacement between the tool and the workpiece during machining. Therefore, the design of a generic multi-axis control system requires the development of control-based models to estimate the transient thermal load and the thermal deformation of the structure in real-time. To satisfy the stringent accuracy and stability requirements of the control system, a new inverse heat conduction problem IHCP solver is developed. This solution is capable of including the inertia effect and the delay in the thermal response, in order to accommodate situations where the measured points cannot be located near the heat source, which may be buried into the structure. Experimental validation of these models showed their inherent stability even when the temperature measurements are contaminated with random errors. The excellent computational efficiency of the integrated system, which is well suited for real-time control applications involving multi-dimensional structures, was achieved by incorporating an inverse numerical Laplace transformation procedure. The results also showed that the thermal deformation transfer function behaves as low-pass filters, and as such it attenuates the high frequency noise associated with temperature measurement error.

1.
Ferreira
,
P. M.
, and
Liu
,
C. R.
,
1993
, “
A Method for Estimating and Compensating Quasi-static Errors of Machine Tools
,”
ASME J. Ind.
,
115
, pp.
149
159
.
2.
Hatamura
,
Y.
,
Nagao
,
T.
,
Mitsuishi
,
M.
,
Kato
,
K.
,
Taguchi
,
S.
,
Okumura
,
T.
,
Nakagawa
,
G.
, and
Sugishita
,
H.
,
1993
, “
Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion
,”
CIRP Ann.
,
42
(
1
), pp.
549
552
.
3.
Ni
,
J.
, and
Wu
,
S. M.
,
1993
, “
An On-line Measurement Technique for Machine Volumetric Error Compensation
,”
ASME J. Ind.
,
115
, pp.
85
92
.
4.
Ichimiya, R., Yokoyama, K., and Watanabe, Y., 1976, “Experimental Study on Thermal Deformation of Machine Tool,” Fac. Engrg., Niigata Univ., Report No. 25.
5.
Ichimiya, R., 1980, “Compensation for Thermal Deformation of Milling Machine,” Proc. Conf. Numerical Methods in Machine Tool Design, Wroclaw, Poland, pp. 39–49.
6.
Spur, G., and Heisel, U., 1977, “Automatic Compensation of Thermal Disturbances in Machine Tools,” Proceeding of the 3rd International Conference on Production Engineering, Kyoto.
7.
Weck, M., Schuze, O., Michels, F., and Bonse, R., 1994, “Optimization of Machine Tools Performance and Accuracy,” ASME Symposium on Intelligent Machine Tool Systems, Int Mech Engrg Congress and Exposition, pp. 895–908.
8.
Chen
,
J. S.
,
Yuan
,
J. X.
,
Ni
,
J.
, and
Wu
,
S. M.
,
1993
, “
Real-time Compensation for Time-Variant Volumetric Errors on a Machining Center
,”
ASME J. Ind.
,
115
, pp.
472
479
.
9.
Schellekens, P., Soons, J., Spann, H., Look, V., Trapet, E., Dooms, J., De Ruiter, H., and Maisch, M., 1993, “Development of Methods for the Numerical Correlation of Machine Tools,” Report to the Commission of the European Communities, EUR 15377 EN 1-191.
10.
Mou
,
J.
, and
Liu
,
C. R.
,
1995
, “
An Adaptive Methodology for Machine Tool Error Correction
,”
ASME J. Ind.
,
117
, pp.
389
399
.
11.
Mou
,
J.
,
Donmez
,
M. A.
, and
Cetinkunt
,
S.
,
1995
, “
An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement
,”
ASME J. Ind.
,
117
, pp.
584
590
, and pp. 591–600.
12.
Moriwaki, T., and Zhao, C., 1992, “Neural Network Approach to Identify Thermal Deformation of Machining Center” Human Aspects in Computer Integrated Manufacturing, G. J. Olling and F. Kimura, eds., Elsevier Science Publishers B. V., pp. 685–697.
13.
Sata, T., Takeuchi, Y., and Okubo, N., 1975, “Control of the Thermal Deformation of a Machine Tool,” Proc., 16th Int. MTDR Conference, McMillan Press, pp. 203–208.
14.
Sata
,
T.
,
Takeuchi
,
Y.
,
Sakamoto
,
M.
, and
Weck
,
M.
,
1981
, “
Improvement of Working Accuracy on NC Lathe by Compensation for the Thermal Expansion of Tool
,”
CIRP Ann.
,
30
(
1
), pp.
445
449
.
15.
Moriwaki
,
T.
,
1988
, “
Thermal Deformation and Its On-Line Compensation of Hydraulically Supported Precision Spindle
,”
CIRP Ann.
,
37
(
1
), pp.
393
396
.
16.
Spur, G., and Fischer, H., 1969, “Thermal Behaviour of Machine Tools,” Proc. 10th Int. MTDR Conference, Macmillan Press, pp. 147–160.
17.
Jedrzejewski, J., 1988, “Directions for Improving the Thermal Stability of Machine Tools,” Symposium on Thermal Aspects in Manufacturing, M. H. Attia and I. Kops, eds., ASME, Chicago, III., pp. 165–182.
18.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1998
, “
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part I-Concept of Generalized Modelling
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
623
631
.
19.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1998
, “
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part II-Generalized Transfer Functions
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
632
639
.
20.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1999
, “
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part III-Real Time Identification of Heat Input to the Structure
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
501
508
.
21.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1999
, “
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part IV-A Multi-Variable Closed-Loop Control System
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
509
516
.
22.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1999
, “
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures: Part V-A Multi-Variable Closed-Loop Control System
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
517
523
.
23.
Attia
,
M. H.
, and
Fraser
,
S.
,
1999
, “
A Generalized Modelling Methodology for Optimized Real-Time Compensation of Thermal Deformation of Machine Tool and CMM Structures
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
1001
1016
.
24.
Aronson
,
R.
,
1994
, “
Machine Tool 101: Part 7, Machine Tools of the Future
,”
Manufacturing Engineering
,
pp.
39
45
.
25.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction: III-posed Problems, Wiley-Interscience Publication, New York.
26.
Hensel
,
E.
,
1988
, “
Inverse Problems for Multi-dimensional Parabolic Partial Differential Equations
,”
Appl. Mech. Rev.
,
41
, pp.
263
269
.
27.
Beck, J. V., 1968, “Surface Heat Flux Determinations Using an Integral Method,” Nucl. Eng. Design, pp. 170–187.
28.
Murio, D. A., 1993, The Mollification Method and Numerical Solution of III-Posed Problems, Wiley, N.Y.
29.
Alifanov, O. M., Artyukhin, E. A., and Rumyantsev, S. V., 1995, Extreme Methods for Solving III-Posed Problems with Applications to Inverse Heat Transfer, Begell House, New York.
30.
Imber
,
M.
,
1974
, “
Temperature Extrapolation Mechanism for Two-dimensional Heat Flow
,”
AIAA J.
,
12
, pp.
1089
1093
.
31.
Dumek, V., Druckmueller, M., Raudensky, M., and Woodbury, K. A., 1993, “Novel Approach to IHCP: Neural Networks and Expert Systems,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 275–282.
32.
Alifanov, O. M., and Nenarokomov, A. V., 1993, “Boundary IHCP in Extreme Formulation,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 31–37.
33.
Murio, D. A., 1993, “On the Numerical Solution of the Two-dimensional IHCP by Discrete Mollification,” Proc. ASME Conf on Inverse Problems in Engineering: Theory and Practice, N. Zabaras, K. A. Woodbury, and M. Raynaud, eds., pp. 17–21.
34.
Haji-Sheikh
,
A.
, and
Buckingham
,
F. P.
,
1993
, “
Multidimensional Inverse Heat Conduction Using the Monte Carlo Method
,”
ASME J. Heat Transfer
,
115
, pp.
26
33
.
35.
Crump
,
K. S.
,
1976
, “
Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation
,”
J. Assoc. Comput. Mach.
,
23
, pp.
89
96
.
You do not currently have access to this content.