Laser repetitive pulse heating of the workpiece surfaces results in thermal stresses developed in the vicinity of the workpiece surface. In the present study, laser repetitive pulse heating with a gas assisting process is modelled. A two-dimensional axisymmetric case is considered and governing equations of heat transfer and flow are solved numerically using a control volume approach while stress equations are solved using the finite element method (FEM). In this analysis, a gas jet impinging onto the workpiece surface coaxially with the laser beam is considered. A low-Reynolds number kε model is introduced to account for the turbulence. When computing the temperature and stress fields two repetitive pulse types and variable properties of workpiece, and gas jet are taken into account. Temperature predictions were discussed in a previous study. A stress field is examined at present. It is found that the radial stress component is compressive while its axial counterpart is tensile. The temporal behavior of the equivalent stress almost follows the temperature field in the workpiece. The pulse type 1 results in higher equivalent stress in the workpiece as compared to that corresponding to pulse type 2.

1.
Ready
,
J. F.
,
1965
, “
Effects due to Absorption of Laser Radiation
,”
J. Appl. Phys.
,
36
, pp.
462
470
.
2.
Schultz
,
W.
,
Becher
,
D.
,
Frank
,
J.
,
Kennerling
,
K.
, and
Herziger
,
G.
,
1993
, “
Heat Conduction Losses in Laser Cutting of Metals
,”
J. Phys. D
,
26
, pp.
1357
1363
.
3.
O’Neill
,
W.
, and
Steen
,
W. M.
,
1995
, “
A Three Dimensional Analysis of Gas Entrainment Operating During the Laser Cutting Process
,”
J. Phys. D
,
28
, pp.
12
18
.
4.
Archombault
,
P.
, and
Azim
,
A.
,
1995
, “
Inverse Solution of the Heat-Transfer Equation: Application to Steel and Aluminum Alloy Quenching
,”
J. Mater. Eng. Perform.
,
4
, pp.
730
736
.
5.
Ji
,
Z.
, and
Wu
,
S.
,
1998
, “
FEM Simulation of the Temperature Field During the Laser Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
74
, pp.
89
95
.
6.
Yilbas
,
B. S.
,
1996
, “
Analytical Solution for Time Unsteady Laser Pulse Heating of Semi-infinite Solid
,”
Int. J. Mech. Sci.
,
30
, pp.
671
682
.
7.
Diniz Neto
,
O.
, and
Lima
,
C. A. J.
,
1994
, “
Non-Linear Three Dimensional Temperature Profiles in Pulsed Laser Heated Solids
,”
J. Phys. D
,
27
, pp.
1795
1804
.
8.
Simon
,
G.
,
Gratzke
,
U.
, and
Kroos
,
J.
,
1993
, “
Analysis of Heat Conduction in Deep Penetration Welding With a Time-Modulated Laser Pulse
,”
J. Phys. D
,
26
, pp.
862
869
.
9.
Yilbas
,
B. S.
, and
Shuja
,
S. Z.
,
1997
, “
Heat Transfer Analysis of Laser Heated Surfaces-Conduction Limited Case
,”
Appl. Surf. Sci.
,
108
, pp.
167
175
.
10.
Modest
,
M. F.
, and
Aboikans
,
H.
,
1986
, “
Heat Conduction in a Moving Semi-infinite Solid Subjected to Pulsed Laser Irradiation
,”
ASME J. Heat Transfer
,
108
, pp.
597
601
.
11.
Hoadley
,
A. F. A.
,
Pappoz
,
M.
, and
Zimmermann
,
M.
,
1991
, “
Heat-Flow Simulation of Laser Remelting With Experimental Validation
,”
Metall. Trans. B
,
22B
, pp.
101
109
.
12.
Hecter
, Jr.,
L. G.
,
Kim
,
W. S.
, and
Drisik
,
M. N.
,
1992
, “
Hyperbolic Heat Conduction due to a Mode Locked Laser Pulse Train
,”
Int. J. Eng. Sci.
,
30
, pp.
1731
1744
.
13.
Ashfort-Frost
,
S.
, and
Jamburnathran
,
P.
,
1996
, “
Numerical Prediction of Semi-confined Jet Impingement and Comparisons With Experimental Data
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
295
306
.
14.
Ariel
,
P. D.
,
1993
, “
Stagnation Flow—A Free Boundary Value Problem Formulation
,”
Int. J. Comput. Math.
,
49
, pp.
123
131
.
15.
Abid
,
R.
, and
Speziale
,
C. G.
,
1996
, “
The Free Stream Matching Condition for Stagnation Point Turbulent Flows: An Alternative Formulation
,”
ASME J. Appl. Mech.
,
63
, pp.
95
100
.
16.
Craft
,
T. S.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment-II. An Examination of the Performance of Few Turbulence Models
,”
Int. J. Heat Mass Transf.
,
36
, pp.
2685
2697
.
17.
Strahle
,
W. C.
,
1985
, “
Stagnation Point Flows With Freestream Turbulence—The Matching Condition
,”
AIAA J.
,
23
, pp.
1822
1824
.
18.
Shuja
,
S. Z.
, and
Yilbas
,
B. S.
,
1998
, “
Gas-Assisted Repetitive Pulsed Heating of a Steel Surface
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
212
, pp.
741
757
.
19.
Shuja
,
S. Z.
, and
Yilbas
,
B. S.
,
1998
, “
Pulsative Heating of Surfaces
,”
Int. J. Heat Mass Transf.
,
41
, pp.
3899
3918
.
20.
Chu
,
J. P.
,
Rigsbee
,
J. M.
,
Banons
,
G.
, and
Elsayed-Ali
,
H. E.
,
1999
, “
Laser Shock Processing Effects on Surface Microstructure and Mechanical Properties of Low Carbon Steel
,”
Mater. Sci. Eng., A
,
260
, pp.
260
268
.
21.
Hasselmon
,
D. P. H.
, and
Crandall
,
W. B.
,
1963
, “
Thermal Shock Analysis of Spherical Shapes-II
,”
J. Am. Ceram. Soc.
,
49
, pp.
434
437
.
22.
Wang
,
H. G.
,
Guan
,
Y. H.
,
Chen
,
T. L.
, and
Zhang
,
J. T.
,
1997
, “
A Study of Thermal Stresses During Laser Quenching
,”
J. Mater. Process. Technol.
,
63
, pp.
550
553
.
23.
Modest
,
M. F.
,
1998
, “
Transient Elastic and Viscoelastic Thermal Stresses During Laser Drilling of Ceramics
,”
ASME J. Heat Transfer
,
120
, pp.
892
898
.
24.
Dain
,
Y.
,
Kapadia
,
P. D.
, and
Dowden
,
J. M.
,
1999
, “
The Distortion Gap Width and Stresses in Laser Welding of Thin Elastic Plates
,”
J. Phys. D
,
32
, pp.
168
175
.
25.
Elperin
,
T.
, and
Rudin
,
G.
,
1996
, “
Thermoelasticity Problem for a Multilayer Coating-Substrate Assembly Irradiated by a Laser Beam
,”
Int. Commun. Heat Mass Transfer
,
23
, pp.
133
142
.
26.
Li
,
K.
, and
Sheng
,
P.
,
1995
, “
Plane Stress Model for Fracture of Ceramics During Laser Cutting
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
1493
1506
.
27.
Yilbas
,
B. S.
,
Sami
,
M.
, and
Shuja
,
S. Z.
,
1998
, “
Laser-Induced Thermal Stresses on Steel Surface
,”
Opt. Lasers Eng.
,
30
, pp.
25
37
.
28.
Berocci, C., 1991, Introduction to the Modeling of Turbulence, Von Karman Inst for Fluid Dynamics, March.
29.
Gotski, T. B., Hussaini, M. Y., and Lumley J. L., 1996, Simulation and Modeling of Turbulent Flows, Oxford Univ. Press, New York.
30.
Elhaleim
,
O.
,
Reggio
,
M.
, and
Camatero
,
R.
,
1992
, “
Simulating Two-Dimensional Turbulent Flow by Using k−ε Model and the Vorticity-Stream Function Formulation
,”
Int. J. Numer. Methods Fluids
,
14
, pp.
961
980
.
31.
Incropera, F. P., and Dewitt, D. P., 1985, Introduction to Heat Transfer, Appendix, John Wiley, New York, pp. 667–696.
32.
Patankar, S. V., 1981, Computer Analysis of Fluid Flow and Heat Transfer, Ch.8, Pinridge, Swansea, pp. 223–252.
33.
Shuja, S. Z., 1993, “Calculations of Fluid Flow and Heat Transfer in Expanding Ducts,” MS Thesis, King Fahd Univ., Dhahran, Saudi Arabia.
34.
Bathe, K. J., 1996, Finite Element Procedures, Ch.6, Prentice Hall, New Jersey, pp. 148–192.
You do not currently have access to this content.