Gear hobbing is an efficient method to manufacture high quality and performance toothed wheels, although it is associated with complicated process kinematics, chip formation and tool wear mechanisms. The variant cutting contribution of each hob tooth to the gear gaps formation might lead to an uneven wear distribution on the successive cutting teeth and to an overall poor tool utilization. To study quantitatively the tool wear progress in gear hobbing, experimental-analytical methods have been established. Gear hobbing experiments and sophisticated numerical models are used to simulate the cutting process and to correlate the undeformed chip geometry and other process parameters to the expected tool wear. Herewith the wear development on the individual hob teeth can be predicted and the cutting process optimized, among others, through appropriate tool tangential shifts, in order to obtain a uniform wear distribution on the hob teeth. To determine the constants of the equations used in the tool wear calculations, fly hobbing experiments were conducted. Hereby, it was necessary to modify the fly hobbing kinematics, applying instead of a continuous tangential feed, a continuous axial one. The experimental data with uncoated and coated high speed steel (HSS) tools were evaluated, and correlated to analytical ones, elaborated with the aid of the numerical simulation of gear hobbing. By means of the procedures described in this paper, tool wear prediction as well as the optimization of various magnitudes, as the hob tangential shift parameters can be carried out.

1.
Sulzer, G., 1974, “Leistungssteigerung bei der Zylinderradherstellung durch genaue Erfassung der Zerspankinematik,” Dissertation, TH Aachen.
2.
Joppa, K. 1977, “Leistungssteigerung beim Waelzfraesen mit Schnellarbeitsstahl durch Analyze, Beurteilung und Beinflussung des Zerspanprozesses,” Dissertation, TH Aachen.
3.
Tondorf, J., 1978, “Erhoehung der Fertigungsgenauigkeit beim Waelzfraesen durch systematische Vermeidung von Aufbauschneiden,” Dissertation, TH Aachen.
4.
Bouzakis
,
K.-D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 1: Digitalrechnerprogramm FRDYN
,”
VDI-Z
,
121
, No. 19, Oct., pp.
943
950
.
5.
Bouzakis
,
K.-D.
,
1979
, “
Ermittlung des zeitlichen Verlaufs der Zerspankraftkomponenten beim Waelzfraesen Teil 2: Einfluesse technologischer Parameter der Werkzeuggeometrie und der Werkradgeometrie
,”
VDI-Z
,
121
, No. 20, Oct., pp.
1016
1026
.
6.
Bouzakis
,
K.-D.
, 1980, “Konzept und technologishe Grundlagen zur automatiserten Erstellung optimaler Bearbeitungsdaten beim Waelzfraesen,” Habilitation, TH Aachen VDI-Z, 2, No. 42.
7.
Venohr, G., 1985, “Beitrag zum Einsatz von Hartmetall Werkzeugen beim Waelzfraesen,” Dissertation, TH Aachen.
8.
Kauven, R. H., 1987, “Waelzfraesen mit Titannitridbeschichteten HSS-Werkzeugen,” Dissertation, TH Aachen.
9.
Antoniadis, A., 1988, “Determination of the Impact Tool Stresses During Gear Hobbing and Determination of Cutting Forces During Hobbing of Hardened Gears,” Dissertation, Aristoteles University of Thessaloniki.
10.
Gutman, P., 1988, “Zerspankraftberechnung beim Waelzfraesen,” Dissertation, TH Aachen.
11.
Mundt, A., 1992, “Modell zur rechnerichen Standzeitbestimmung beim Waelzfraesen,” Dissertation, TH Aachen.
12.
Bouzakis
,
K.-D.
, and
Antoniadis
,
A.
,
1995
, “
Optimizing Tool Shift in Gear Hobbing
,”
CIRP Ann.
,
44
, pp.
75
79
.
13.
Bouzakis
,
K.-D.
, 1980, “Mathematische Beschreibung des Verlaufes des Werkzeugverschleißes beim Waelzfraezen. Teil 1: Untersuchungsmethoden und Kenngroeßen zur Erfassung des Werzeugverschleißes in den einzelnen Waelzstellungen,” VDI-Z, No. 20, Oct., pp. 857–868.
14.
Bouzakis
,
K.-D.
,
1980
, “
Mathematische Beschreibung des Verlaufes des Werkzeugverschleißes beim Waelzfraezen. Teil 2: Berechnung der Verschleißentwicklung in den einzelnen Waelzstellungen und beim Shiften; Programmkette Waelzfraeservershleiß
,”
VDI-Z
,
122
, No. 21, Nov.
1
, pp.
951
965
.
15.
Bouzakis
,
K.-D.
, and
Koenig
,
W.
,
1981
, “
Process on Models for the Incorporation of Gear Hobbing into an Information Center for Machining Data
,”
CIRP Ann.
,
30
, pp.
77
82
.
16.
CemeCon GmbH, 1997, Informational Bulletins: Coating Services, Aachen.
17.
Bouzakis, K.-D., Antoniadis, A., Kombogiannis, S., Orfanidis, N., Stamatiadis, Ch., and Vidras, A., 1998, “Determination of Tool Life Time in Gear Hobbing, to Increase the Productivity and to Reduce the Manufacturing Costs,” final report of PAVE project BE411, General Secretariat for Research and Technology, Ministry for Industry and Development of Greece.
18.
Bouzakis
,
K.-D.
, et al.
,
1998
, “
Experimental and FEM Analysis of the Fatigue Behavior of PVD Coatings on HSS Substrate in Milling
,”
CIRP Ann.
,
47
, pp.
69
73
.
19.
Klocke
,
F.
, et al.
,
1998
, “
Improved Cutting Processes with Adapted Coating Systems
,”
CIRP Ann.
,
47
, pp.
65
68
.
20.
Bouzakis
,
K.-D.
,
Vidakis
,
N.
,
Kallinikidis
,
D.
,
Leyendecker
,
T.
,
Erkens
,
G.
,
Fuss
,
H.-G.
, and
Wenke
,
R.
,
1998
, “
Failure Mechanisms of Multi- and Mono-Layer Physically Vapor Deposited Coatings in Interrupted Cutting Processes
,”
Surf. Coat. Technol.
,
108–109
, pp.
526
534
.
21.
Bouzakis, K.-D, Kombogiannis, S., Antoniadis, A., Vidakis, N., and Anastopoulos, J., 1999, “Lifetime Prediction of PVD Coated HSS Tools in Gear Hobbing,” 1st International Conference THE Coatings, October, Ziti Ed., Thessaloniki pp. 139–158.
22.
Bouzakis, K.-D, Kombogiannis, S., Antoniadis, A., Vidakis, N., and Anastopoulos, J., 1999, “Lifetime Prediction of PVD Coated Tools in Gear Hobbing,” 5th Conference on Machine Tools-Manufacturing Processes, December, Ziti Ed., Thessaloniki, pp. 224–245.
23.
Bouzakis, K.-D, Kombogiannis, S., Antoniadis, and A., Vidakis, N., 1999, “Modeling of Gear Hobbing. Cutting Simulation and Tool Wear Prediction Models,” ASME International Mechanical Engineering Congress and Exposition, MED-Vol. 10, pp. 253–259.
24.
Bouzakis, K.-D, Kombogiannis, S., Antoniadis, A., and Vidakis, N., 1999, “Modeling of Gear Hobbing. Cutting Simulation, Tool Wear Prediction Models and Computer Supported Experimental-Analytical Determination of the Hob Life-time,” ASME International Mechanical Engineering Congress and Exposition, MED-Vol. 10, pp. 261–269.
You do not currently have access to this content.