Part 2 of this paper reveals the predominant mechanism of flux decline during microfiltration of the synthetic MWF described in Part 1 of this paper. An analysis of flux data obtained during the experimental investigation suggests that adsorptive interactions occur at the membrane surface. Field Emission Environmental Scanning Electron Microscopy (FE-ESEM) images of aluminum oxide membranes after MWF microfiltration illustrate that adsorption leads to a reduction in pore diameter that serves to reduce flux. The majority of the adsorption is accounted for by a single lubricant additive in the MWF formulation. FE-ESEM images also reveal that the mechanism of flux decline for the defoamer varies depending on the presence of lubricant additive in solution. In the absence of lubricant additive, the defoamer forms a cake layer at the membrane surface. In the presence of the lubricant additive, the defoamer adsorbs to the surface of the membrane with the lubricant additive to constrict pores. In contrast to the lubricant additive and defoamer, base fluid flux decline observed after specialty additive exposure cannot be accounted for by adsorption leading to pore constriction. [S1087-1357(00)01203-X]

1.
Mahdi
,
S. M.
, and
Sko¨ld
,
R. O.
,
1991
, “
Experimental Study of Membrane Filtration for the Recycling of Synthetic Water-Based Metalworking Fluids
,”
Tribol. Int.
,
24
, pp.
389
395
.
2.
Rajagopalan
,
N.
, et al.
,
1998
, “
Pollution Prevention in an Aluminum Grinding Facility
,”
Met. Finish.
,
96
, pp.
18
24
.
3.
Mahdi
,
S. M.
, and
Sko¨ld
,
R. O.
,
1990
, “
Surface Chemistry Aspects on the Use of Ultrafiltration for the Recycling of Waterbased Synthetic Metalworking Fluids: Components Studies
,”
J. Dispers. Sci. Technol.
,
11
, pp.
1
30
.
4.
Misra
,
S. K.
, and
Sko¨ld
,
R. O.
,
1999
, “
Membrane Filtration Studies of Inversely Soluble Model Metalworking Fluids
,”
Sep. Sci. Technol.
,
34
, pp.
53
67
.
5.
Belfort
,
G.
,
Davis
,
R. H.
, et al.
,
1994
, “
The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration
,”
J. Membr. Sci.
,
96
, pp.
1
58
.
6.
Ho, W. S. W., and Sirkar, K. K., eds. 1992, Membrane Handbook, Van Nostrand Reinhold, New York.
7.
Cheryan, M., 1986, Ultrafiltration Handbook, Technomic, Lancaster, Pennsylvania.
8.
Levine
,
S.
, and
Marriott
,
R.
,
1975
, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials
,”
J. Colloid Interface Sci.
,
52
, pp.
136
149
.
9.
Bowen
,
W. R.
, and
Cao
,
X.
,
1998
Electrokinetic Effects in Membrane Pores and the Determination of Zeta-Potential
,”
J. Membr. Sci.
,
140
, pp.
267
273
.
10.
Nazzal
,
F. F.
, and
Wiesner
,
M. R.
,
1994
, “
pH and Ionic Strength Effects on the Performance of Ceramic Membranes in Water Filtration
,”
J. Membr. Sci.
,
93
, pp.
91
103
.
11.
Porter
,
J. J.
, and
Zhuang
,
S.
,
1996
, “
Performance and Fouling of Inorganic Tubular Microfilters
,”
Desalination
,
107
, pp.
203
215
.
12.
Sato
,
H.
, et al.
,
1996
, “
Cross-Flow Filtration of Machining Fluids by Microfiltration Membranes (Influence of Chip Size on Permeation Flux)
,”
JSME Int. J.
,
39
, pp.
636
644
.
13.
Herna´ndez
,
A.
,
Martinez
,
F.
, et al.
,
1995
, “
Porous Structure and Surface Charge Density on the Walls of Microporous Alumina Membranes
,”
J. Colloid Interface Sci.
,
173
, pp.
284
296
.
14.
Sko¨ld
,
R. O.
,
1991
, “
Field Testing of a Model Waterbased Metalworking Fluid Designed for Continuous Recycling Using Ultrafiltration
,”
Lubr. Eng.
,
47
, pp.
653
659
.
15.
de Gennes
,
P. G.
,
1980
, “
Conformations of Polymers Attached to an Interface
,”
Macromolecules
,
13
, pp.
1069
1075
.
16.
Marques
,
C.
,
Joanny
,
J. F.
, and
Leibler
,
L.
,
1988
, “
Adsorption of Block Copolymers in Selective Solvents
,”
Macromolecules
,
21
, pp.
1051
1059
.
17.
Munch
,
M. R.
, and
Gast
,
A. P.
,
1988
, “
Block Copolymers at Interfaces. 2. Surface Adsorption
,”
Macromolecules
,
21
, pp.
1366
1372
.
18.
Bascom
,
W. D.
,
1968
, “
The Wettability of Fluoro- and Chlorocarbon Trialkoxysilane Films Adsorbed on Glass and Metal Surfaces
,”
J. Colloid Interface Sci.
,
27
, pp.
789
796
.
19.
Liew
,
M. K. H.
,
Fane
,
A. G.
, et al.
,
1996
, “
Fouling Effects of Yeast Culture with Antifoam Agents on Microfilters
,”
Biotechnol. Bioeng.
,
53
, pp.
10
16
.
20.
McGregor
,
C.
, and
Weaver
,
J.
,
1988
, “
Antifoam Effects on Ultrafiltration
,”
Biotechnol. Bioeng.
,
31
, pp.
385
389
.
21.
Hunter, R. J., 1982, Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London.
You do not currently have access to this content.