With the ever increasing demand for higher machining accuracy at lower cost, thermal deformation of machine tool structures has to be minimized at the design stage, and compensated for during operation. To compensate for this type of error, two real-time process models are required to identify the magnitude of the transient thermal load and to estimate the relative thermal displacement between the tool and the work piece. Special considerations should be given to the solution of the first ill-posed inverse heat conduction model IHCP. In this paper, the concept of generalized modelling is extended to the thermal deformation problem. The results of this analysis is used to develop expressions for the generalized transfer functions of the thermal, and thermal deformation response of the machine tool structure. These transfer functions are the basic building blocks for real-time solution of the IHCP and then the deformation problem. The latter acts as a feed-back signal to the control system. Finite element simulation of the temperature field and the thermal deformation of a machine tool structure confirmed that the generalized transfer function approach can reproduce the accuracy of the finite element model but two orders of magnitude faster.
Skip Nav Destination
Article navigation
August 1998
Research Papers
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions
S. Fraser,
S. Fraser
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
Search for other works by this author on:
M. H. Attia,
M. H. Attia
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
Search for other works by this author on:
M. O. M. Osman
M. O. M. Osman
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
Search for other works by this author on:
S. Fraser
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
M. H. Attia
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
M. O. M. Osman
Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada
J. Manuf. Sci. Eng. Aug 1998, 120(3): 632-639 (8 pages)
Published Online: August 1, 1998
Article history
Received:
May 1, 1995
Revised:
June 1, 1997
Online:
January 17, 2008
Citation
Fraser, S., Attia, M. H., and Osman, M. O. M. (August 1, 1998). "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions." ASME. J. Manuf. Sci. Eng. August 1998; 120(3): 632–639. https://doi.org/10.1115/1.2830168
Download citation file:
Get Email Alerts
Effect of Microgravity on the Metal Droplet Transfer and Bead Characteristics in the Directed Energy Deposition-Arc Process
J. Manuf. Sci. Eng (December 2024)
Femtosecond Pulsed Laser Machining of Fused Silica for Micro-Cavities With Sharp Corners
J. Manuf. Sci. Eng (January 2025)
Acquired Angle Error Correction Based on Variation of an Angle Detection Signal Intensity in Rotary Encoders
J. Manuf. Sci. Eng (January 2025)
Related Articles
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 5: Experimental Verification
J. Manuf. Sci. Eng (August,1999)
Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response
J. Manuf. Sci. Eng (May,2004)
Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling
J. Manuf. Sci. Eng (August,1998)
Related Proceedings Papers
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries