Abstract

Control co-design (CCD) represents a promising solution for coordinating the physical design and control of dynamic engineering systems as technological demands become more stringent. Predictive control co-design (pCCD), recently introduced to the CCD literature, optimizes combinations of feedforward and feedback static gain sets at the system design stage to combine the robustness and preview control afforded using state-of-the-art control methods, like model predictive control (MPC), in CCD with the computational efficiency of open-loop CCD methods that solve CCD problems with a single optimization level. This work contributes the first experimental validation of pCCD to the literature. First, pCCD is performed offline on a spring-mass-damper system. The co-designed system’s optimal response is then experimentally validated online. Results are compared to an analogous system co-designed with an open-loop CCD method. The experimental system co-designed using pCCD yielded a sum squared error with respect to a desired reference signal 40 times smaller than the system co-designed using open-loop CCD. The results indicate that pCCD yields co-designed systems with superior online robustness in comparison to open-loop CCD methods. Moreover, systems co-designed using pCCD are more robust to both modeling error and unexpected disturbance inputs or changes in desired reference signals encountered online.

References

1.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-design: An Engineering Game Changer
,”
Adv. Control Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.
2.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
3.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
4.
Kim
,
M.-J.
, and
Peng
,
H.
,
2007
, “
Power Management and Design Optimization of Fuel Cell/Battery Hybrid Vehicles
,”
J. Power Sources
,
165
(
2
), pp.
819
832
.
5.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101401
.
6.
Peddada
,
S. R.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
.
7.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control Co-design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091709
.
8.
Nash
,
A. L.
, and
Jain
,
N.
,
2019
, “
Combined Plant and Control Co-design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
1
8
.
9.
Nash
,
A.
, and
Jain
,
N.
,
2020
, “
Hierarchical Control Co-design Using a Model Fidelity-Based Decomposition Framework
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011708
.
10.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-design: A Framework for Complete Optimal Plant and Control Architecture Design
,”
2015 American Control Conference (ACC)
,
Chicago, IL
,
Juy 1–3
,
IEEE
, pp.
4916
4922
.
11.
Diangelakis
,
N. A.
,
Burnak
,
B.
,
Katz
,
J.
, and
Pistikopoulos
,
E. N.
,
2017
, “
Process Design and Control Optimization: A Simultaneous Approach by Multi-parametric Programming
,”
AIChE J.
,
63
(
11
), pp.
4827
4846
.
12.
Garcia
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice—A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.
13.
Schwenzer
,
M.
,
Ay
,
M.
,
Bergs
,
T.
, and
Abel
,
D.
,
2021
, “
Review on Model Predictive Control: An Engineering Perspective
,”
Int. J. Adv. Manuf. Technol.
,
117
(
5
), pp.
1327
1349
.
14.
Gostin
,
D.
, and
Koeln
,
J.
,
2024
, “
Robust Model Predictive Control With Temporally-Uncertain Disturbance Preview Information
,”
2024 American Control Conference (ACC)
,
Toronto, ON, Canada
,
July 10–12
, pp.
2488
2493
.
15.
Raghuraman
,
V.
, and
Koeln
,
J. P.
,
2023
, “
Long Duration Stochastic MPC With Mission-Wide Probabilistic Constraints Using Waysets
,”
IEEE Control Syst. Lett.
,
7
(
1
), pp.
865
870
.
16.
Bird
,
T. J.
,
Jain
,
N.
,
Pangborn
,
H. C.
, and
Koeln
,
J. P.
,
2022
, “
Set-Based Reachability and the Explicit Solution of Linear MPC Using Hybrid Zonotopes
,”
2022 American Control Conference (ACC)
,
Atlanta, GA
,
June 8–12
, pp.
158
165
.
17.
Bird
,
T. J.
,
Siefert
,
J. A.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2024
, “
A Set-Based Approach for Robust Control Co-design
,”
2024 American Control Conference (ACC)
,
Toronto, ON, Canada
,
July 10–12
, pp.
2564
2571
.
18.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control Co-design With Receding-Horizon MPC
,”
2021 American Control Conference
,
New Orleans, LA
,
May 25–28
, pp.
1
7
.
19.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
J. Dyn. Syst. Meas. Control
,
143
(
8
), p.
081009
.
20.
Nash
,
A.
,
2024
, “
Predictive Control Co-design (pCCD): A Single-Level Optimization Framework for Computationally-Efficient Approximation of Recursive MPC in CCD
,”
ASME J. Dyn. Syst. Meas. Control
,
146
(
4
), pp.
1
12
.
21.
Naik
,
K.
, and
Vermillion
,
C.
,
2024
, “
Integrated Physical Design, Control Design, and Site Selection for an Underwater Energy-Harvesting Kite System
,”
Renew. Energy
,
220
, p.
119687
.
22.
Abbas
,
N. J.
,
Jasa
,
J.
,
Zalkind
,
D. S.
,
Wright
,
A.
, and
Pao
,
L.
,
2024
, “
Control Co-design of a Floating Offshore Wind Turbine
,”
Appl. Energy
,
353
(Part B), p.
122036
.
23.
López-Queija
,
J.
,
Tena
,
A.
,
Jugo
,
J.
,
Aristondo
,
A.
, and
Robles
,
E.
,
2024
, “
Simultaneous Design Optimisation Methodology for Floating Offshore Wind Turbine Substructure and Feedback-Based Control Strategy
,”
Appl. Ocean Res.
,
150
, p.
104120
.
24.
Peters
,
D. L.
,
Kurabayashi
,
K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2008
, “
Co-design of a MEMS Actuator and Its Controller Using Frequency Constraints
,”
ASME 2008 Dynamic Systems and Control Conference
,
Ann Arbor, MI
,
Oct. 20–22
,
American Society of Mechanical Engineers
, pp.
801
807
.
25.
Currie
,
J.
, and
Wilson
,
D.
,
2012
, “
OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User
,”
Foundations of Computer-Aided Process Operations
,
Savannah, GA
,
Jan. 8–11
, pp.
1
6
.
26.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Decomposition-Based MDSDO for Co-design of Large-Scale Dynamic Systems
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, pp.
1
10
.
You do not currently have access to this content.