Abstract

In this work, we present a new approach that enables rapid learning and design of the attitude controller for quadcopters. The proposed technique leverages the dynamic structure of the system to efficiently learn an accurate linear model around the hovering position from a small batch of flight data. An linear quadratic regulator-based attitude controller is designed based on the estimation accordingly. In our approach, we may not need to conduct multiple experiments to fine-tune the controller and can accomplish such a control design with a single experiment. We further develop this approach into an onboard design framework where the attitude controller can be directly learned online and recursively fine-tunes itself with the limited onboard computation resources. The practicality and efficacy of the proposed approaches are demonstrated in both simulation and a physical quadcopter platform.

References

1.
Kim
,
S.
,
Sreenath
,
K.
,
Bhattacharya
,
S.
, and
Kumar
,
V.
,
2012
, “
Optimal Trajectory Generation Under Homology Class Constraints
,”
2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
,
Grand Wailea, HI
,
Dec. 10–13
,
IEEE
, pp.
3157
3164
.
2.
Muñoz Mendoza
,
L. F.
,
García-Torales
,
G.
,
Acosta Lúa
,
C.
,
Di Gennaro
,
S.
, and
Guillen Bonilla
,
J. T.
,
2023
, “
Trajectories Generation for Unmanned Aerial Vehicles Based on Obstacle Avoidance Located by a Visual Sensing System
,”
Mathematics
,
11
(
6
), p.
1413
.
3.
Huang
,
Y.
,
He
,
W.
, and
Zeng
,
S.
,
2023
, “
A Differential Dynamic Programming-Based Approach for Balancing Energy and Time Optimality in Motion Planning
,”
2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2023)
,
Monticello, IL
,
Sept. 26–29
,
IEEE
, pp.
1
7
.
4.
O’Connell
,
M.
,
Shi
,
G.
,
Shi
,
X.
,
Azizzadenesheli
,
K.
,
Anandkumar
,
A.
,
Yue
,
Y.
, and
Chung
,
S.-J.
,
2022
, “
Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
,”
Sci. Rob.
,
7
(
66
), p.
eabm6597
.
5.
Herbert
,
S. L.
,
Chen
,
M.
,
Han
,
S.
,
Bansal
,
S.
,
Fisac
,
J. F.
,
Tomlin
,
C. J.
,
2017
, “
Fastrack: A Modular Framework for Fast and Guaranteed Safe Motion Planning
.”
IEEE 56th Annual Conference on Decision and Control (CDC)
,
Melbourne, Australia
,
Dec. 12–15
, IEEE, pp.
1517
1522
.
6.
Zhou
,
S.
,
Helwa
,
M. K.
, and
Schoellig
,
A. P.
,
2020
, “
Deep Neural Networks as Add-On Modules for Enhancing Robot Performance in Impromptu Trajectory Tracking
,”
Int. J. Rob. Res.
,
39
(
12
), pp.
1397
1418
.
7.
Reyes-Valeria
,
E.
,
Enriquez-Caldera
,
R.
,
Camacho-Lara
,
S.
, and
Guichard
,
J.
,
2013
, “
LQR Control for a Quadrotor Using Unit Quaternions: Modeling and Simulation
,” CONIELECOMP 2013,
23rd International Conference on Electronics, Communications and Computing
,
Cholula, Puebla, Mexico
,
Mar. 11–13
,
IEEE
, pp.
172
178
.
8.
Foehn
,
P.
, and
Scaramuzza
,
D.
,
2018
, “
Onboard State Dependent LQR for Agile Quadrotors
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
,
IEEE
, pp.
6566
6572
.
9.
Rauniyar
,
S.
,
Bhalla
,
S.
,
Choi
,
D.
, and
Kim
,
D.
,
2023
, “
Ekf-Slam for Quadcopter Using Differential Flatness-Based LQR Control
,”
Electronics
,
12
(
5
), p.
1113
.
10.
Altan
,
A.
, and
Hacıouglu
,
R.
,
2020
, “
Model Predictive Control of Three-Axis Gimbal System Mounted on UAV for Real-Time Target Tracking Under External Disturbances
,”
Mech. Syst. Signal Process.
,
138
, p.
106548
.
11.
Hu
,
H.
,
Feng
,
X.
,
Quirynen
,
R.
,
Villanueva
,
M. E.
, and
Houska
,
B.
,
2018
, “
Real-Time Tube MPC Applied to a 10-State Quadrotor Model
,”
2018 Annual American Control Conference (ACC)
,
Milwaukee, WI
,
June 27–29
,
IEEE
, pp.
3135
3140
.
12.
Hespanha
,
J. P.
,
Liberzon
,
D.
, and
Morse
,
A. S.
,
2003
, “
Overcoming the Limitations of Adaptive Control by Means of Logic-Based Switching
,”
Syst. Control Lett.
,
49
(
1
), pp.
49
65
.
13.
Bansal
,
S.
,
Akametalu
,
A. K.
,
Jiang
,
F. J.
,
Laine
,
F.
, and
Tomlin
,
C. J.
,
2016
, “
Learning Quadrotor Dynamics Using Neural Network for Flight Control
,”
2016 IEEE 55th Conference on Decision and Control (CDC)
,
Las Vegas, NV
,
Dec. 12–14
,
IEEE
, pp.
4653
4660
.
14.
Chee
,
K. Y.
,
Jiahao
,
T. Z.
, and
Hsieh
,
M. A.
,
2022
, “
Knode-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for Aerial Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2819
2826
.
15.
Vu
,
M.
, and
Zeng
,
S.
,
2023
, “
An Iterative Online Approach to Safe Learning in Unknown Constrained Environments
,”
2023 62nd IEEE Conference on Decision and Control (CDC)
,
Marina Bay Sands, Singapore
,
Dec. 13–15
,
IEEE
, pp.
7330
7335
.
16.
Vu
,
M.
,
Huang
,
Y.
, and
Zeng
,
S.
,
2024
, “
Data-Driven Control of Nonlinear Systems: An Online Sequential Approach
,”
Syst. Control Lett.
,
193
, p.
105932
.
17.
Biggs
,
J. D.
, and
Fournier
,
H.
,
2020
, “
Neural-Network-Based Optimal Attitude Control Using Four Impulsive Thrusters
,”
J. Guidance Control Dyn.
,
43
(
2
), pp.
299
309
.
18.
Li
,
Y.
,
Lei
,
Z.
,
Guo
,
Y.
,
Chen
,
K.
,
Jin
,
J.
, and
Yang
,
Y.
,
2023
, “
Adaptive Attitude Control of UAV Based on Neural Network Compensation
,”
J. Phys. Conf. Ser.
,
2472
, p.
012043
.
19.
Koch
,
W.
,
Mancuso
,
R.
,
West
,
R.
, and
Bestavros
,
A.
,
2019
, “
Reinforcement Learning for UAV Attitude Control
,”
ACM Trans. Cyber-Phys. Syst.
,
3
(
2
), pp.
1
21
.
20.
Han
,
X.
,
Zheng
,
Z.
,
Liu
,
L.
,
Wang
,
B.
,
Cheng
,
Z.
,
Fan
,
H.
, and
Wang
,
Y.
,
2020
, “
Online Policy Iteration ADP-Based Attitude-Tracking Control for Hypersonic Vehicles
,”
Aerosp. Sci. Technol.
,
106
, p.
106233
.
21.
He
,
Z.
, and
Zhao
,
L.
,
2014
, “
A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters
,”
Sci. World J.
,
2014
, p.
280180
.
22.
Bo
,
G.
,
Xin
,
L.
,
Hui
,
Z.
, and
Ling
,
W.
,
2016
, “
Quadrotor Helicopter Attitude Control Using Cascade PID
,”
2016 Chinese Control and Decision Conference (CCDC)
,
Yinchuan, China
,
May 28–30
,
IEEE
, pp.
5158
5163
.
23.
Maleki
,
K. N.
,
Ashenayi
,
K.
,
Hook
,
L. R.
,
Fuller
,
J. G.
, and
Hutchins
,
N.
,
2016
, “
A Reliable System Design for Nondeterministic Adaptive Controllers in Small UAV Autopilots
,”
2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)
,
Scaramento, CA
,
Sept. 25–30
,
IEEE
, pp.
1
5
.
24.
px4
,
2023
, “Holybro pixhawk 4.”
25.
Huang
,
Y.
,
2024
, “
Control Design and Motion Planning for Unmanned Aerial Vehicles: A Data-Driven Scheme
,” Ph.D. Thesis,
Washington University in St. Louis
,
St. Louis, MO
.
26.
Njinwoua
,
B. J.
, and
Wouwer
,
A. V.
,
2018
, “
Cascade Attitude Control of a Quadcopter in Presence of Motor Asymmetry
,”
IFAC-PapersOnLine
,
51
(
4
), pp.
113
118
.
27.
Kim
,
H.
,
Jordan
,
M.
,
Sastry
,
S.
, and
Ng
,
A.
,
2003
, “
Autonomous Helicopter Flight Via Reinforcement Learning
,”
Adv. Neural Infor. Process. Syst.
,
16
.
28.
Zhu
,
Y.
,
2001
,
Multivariable System Identification for Process Control
,
Elsevier
.
29.
Åström
,
K. J.
, and
Wittenmark
,
B.
,
2013
,
Adaptive Control
,
Courier Corporation
.
30.
Islam
,
S. A. U.
, and
Bernstein
,
D. S.
,
2019
, “
Recursive Least Squares for Real-Time Implementation [Lecture Notes]
,”
IEEE Control Syst. Mag.
,
39
(
3
), pp.
82
85
.
31.
Naidu
,
D. S.
,
2002
,
Optimal Control Systems
,
CRC Press
.
32.
Kuantama
,
E.
,
Vesselenyi
,
T.
,
Dzitac
,
S.
, and
Tarca
,
R.
,
2017
, “
PID and Fuzzy-PID Control Model for Quadcopter Attitude With Disturbance Parameter
,”
Int. J. Comput. Commun. Control
,
12
(
4
), pp.
519
532
.
33.
Meier
,
L.
,
Tanskanen
,
P.
,
Heng
,
L.
,
Lee
,
G. H.
,
Fraundorfer
,
F.
, and
Pollefeys
,
M.
,
2012
, “
Pixhawk: A Micro Aerial Vehicle Design for Autonomous Flight Using Onboard Computer Vision
,”
Auton. Rob.
,
33
(
1
), pp.
21
39
.
34.
Yoshikazu
,
N.
,
Sannomiya
,
N.
,
Ohta
,
T.
, and
Tanaka
,
H.
,
1984
, “
A Method for Auto-Tuning of PID Control Parameters
,”
Automatica
,
20
(
3
), pp.
321
332
.
You do not currently have access to this content.