Abstract

Battery management systems require mathematical models of the battery cells that they monitor and control. Commonly, equivalent circuit models are used. We would like to be able to determine the parameter values of their equations using simple tests and straightforward optimizations. Historically, it has appeared that nonlinear optimization is required to find the state-equation time constants. However, this article shows that the relaxation interval following a current or power pulse provides data that can be used to find these time constants using linear methods. After finding the time constants, the remaining parameter values can also be found via linear regression. Overall, only linear algebra is used to find all of the parameter values of the equivalent circuit model. This yields fast, robust, and simple implementations, and even enables application in an embedded system, such as a battery management system, desiring to retune its model parameter values as its cell ages.

References

1.
Plett
,
G. L.
,
2015
,
Battery Management Systems
,
Artech House
,
Boston, MA
.
2.
Van Overschee
,
P.
, and
De Moor
,
B.
,
2012
,
Subspace Identification for Linear Systems: Theory—Implementation—Applications
,
Springer Science & Business Media
,
Boston, MA
.
3.
Idaho National Engineering Laboratory
,
1998
, PNGV Battery Test Manual, Revision 1, Technical Report No. DOE/ID-10597. https://inldigitallibrary.inl.gov/sites/sti/sti/5605669.pdf.
4.
Lu
,
D.
,
Trimboli
,
M. S.
,
Fan
,
G.
,
Zhang
,
R.
, and
Plett
,
G. L.
,
2021
, “
Implementation of a Physics-Based Model for Half-Cell Open-Circuit Potential and Full-Cell Open-Circuit Voltage Estimates: Part II. Processing Full-Cell Data
,”
J. Electrochem. Soc.
,
168
(
7
), p.
070533
.
5.
Foss
,
S. D.
,
1970
, “
A Method of Exponential Curve Fitting by Numerical Integration
,”
Biometrics
,
26
(
4
), pp.
815
821
.
6.
Plett
,
G. L.
, and
McVeigh
,
G.
,
2024
, “
Sensitivity Of Lithium-Ion Battery SOH Estimates to Sensor Measurement Error and Latency
,”
Conference on Electrical, Computer and Energy Technologies (ICECET 2024)
,
Sydney, Australia
,
July 25–27
.
7.
Schmalstieg
,
J.
,
Rahe
,
C.
,
Ecker
,
M.
, and
Sauer
,
D. U.
,
2018
, “
Full Cell Parameterization of a High-Power Lithium-Ion Battery for a Physico-Chemical Model: Part I. Physical and Electrochemical Parameters
,”
J. Electrochem. Soc.
,
165
(
16
), p.
A3799
.
8.
Schmalstieg
,
J.
, and
Sauer
,
D. U.
,
2018
, “
Full Cell Parameterization of a High-Power Lithium-Ion Battery for a Physico-Chemical Model: Part II. Thermal Parameters and Validation
,”
J. Electrochem. Soc.
,
165
(
16
), p.
A3811
.
9.
Pinter
,
Z. M.
,
Marinelli
,
M.
,
Trimboli
,
M. S.
, and
Plett
,
G. L.
,
2024
, “
Linear Continuous-Time Parameter Regressor and Dequantizer for Lithium-Ion Battery Cells With Compromised Measurement Quality
,”
37th International Electric Vehicle Symposium (EVS37)
,
Seoul, South Korea
,
Apr. 23–26
.
10.
Deng
,
X.
,
Yin
,
L.
,
Peng
,
S.
, and
Ding
,
M.
,
2015
, “
An Iterative Algorithm for Solving Ill-conditioned Linear Least Squares Problems
,”
Geod. Geodyn.
,
6
(
6
), pp.
453
59
.
You do not currently have access to this content.