Abstract

We analytically study the emergence of instabilities and the consequent steady-state pattern formation in a stochastic partial differential equation (PDE) based, compartmental model of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear forces representing the infection transmission mechanism and (2) random environmental forces represented by the Ornstein–Uhlenbeck (O–U) stochastic process which better approximates real-world uncertainties. Employing second-order perturbation analysis and computing the local Lyapunov exponent, we find the emergence of diffusion-induced instabilities and analyze the effects of O–U noise on these instabilities. We obtain a range of values of the diffusion coefficient and correlation time in parameter space that support the onset of instabilities. Notably, the stability and pattern formation results depend critically on the correlation time of the O–U stochastic process; specifically, we obtain lower values of steady-state infection density for higher correlation times. Also, for lower correlation times the results approach those obtained in the white noise case. The analytical results are valid for lower-order correlation times. In summary, the results provide insights into the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic model in the presence of strongly nonlinear deterministic infection forces and stochastic environmental forces represented by Ornstein–Uhlenbeck noise.

References

1.
Allen
,
L. J.
,
2017
, “
A Primer on Stochastic Epidemic Models: Formulation, Numerical Simulation, and Analysis
,”
Infect. Dis. Model
,
2
(
2
), pp.
128
142
.
2.
Majid
,
F.
,
Gray
,
M.
,
Deshpande
,
A. M.
,
Ramakrishnan
,
S.
,
Kumar
,
M.
, and
Ehrlich
,
S.
,
2022
, “
Non-Pharmaceutical Interventions as Controls to Mitigate the Spread of Epidemics: An Analysis Using a Spatiotemporal PDE Model and COVID–19 Data
,”
ISA Trans.
,
124
, pp.
215
224
.
3.
Majid
,
F.
,
Deshpande
,
A. M.
,
Ramakrishnan
,
S.
,
Ehrlich
,
S.
, and
Kumar
,
M.
,
2021
, “
Analysis of Epidemic Spread Dynamics Using a PDE Model and COVID- 19 Data From Hamilton County OH USA
,”
IFAC-PapersOnLine
,
54
(
20
), pp.
322
327
.
4.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Phil. Trans. R. Soc. Lond. B
,
237
(
641
), pp.
37
72
.
5.
Meinhardt
,
H.
,
1982
,
Models of Biological Pattern Formation
, Vol.
118
,
Academic Press
,
London
.
6.
Caro
,
T.
,
Izzo
,
A.
,
Reiner Jr.
,
R.
,
Walker
,
H.
, and
Stankowich
,
T.
,
2014
, “
The Function of Zebra Stripes
,”
Nat. Commun.
,
5
(
3535
), pp.
1
10
.
7.
Kondo
,
S.
,
Watanabe
,
M.
, and
Miyazawa
,
S.
,
2021
, “
Studies of Turing Pattern Formation in Zebrafish Skin
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
379
(
2213
), p.
20200274
.
8.
Cass
,
J.
, and
Bloomfield-Gadêlha
,
H.
,
2023
, “
The Reaction-Diffusion Basis of Animated Patterns in Eukaryotic Flagella
,”
Nat. Commun.
,
14
(
5638
), pp.
1
14
.
9.
Glover
,
J. D.
,
Sudderick
,
Z. R.
,
Bo-Ju Shih
,
B.
,
Batho-Samblas
,
C.
,
Charlton
,
L.
,
Krause
,
A. L.
,
Anderson
,
C.
, et al
,
2023
, “
The Developmental Basis of Fingerprint Pattern Formation and Variation
,”
Cell
,
186
(
5
), pp.
940
956
.
10.
Murray
,
J.
,
1993
,
Mathematical Biology
,
Springer-Verlag
,
Berlin, Germany
.
11.
Landge
,
A. N.
,
Jordan
,
B. M.
,
Diego
,
X.
, and
Müller
,
P.
,
2020
, “
Pattern Formation Mechanisms of Self-Organizing Reaction-Diffusion Systems
,”
Dev. Bio.
,
460
(
1
), pp.
2
11
.
12.
Riaz
,
S. S.
,
Sharma
,
R.
,
Bhattacharyya
,
S. P.
, and
Ray
,
D. S.
,
2007
, “
Instability and Pattern Formation in Reaction-Diffusion Systems: A Higher Order Analysis
,”
J. Chem. Phys.
,
127
(
6
), p.
064503
.
13.
Singh
,
A. K.
,
Miller
,
G.
,
Kumar
,
M.
, and
Ramakrishnan
,
S.
,
2023
, “
Dynamic Instabilities and Pattern Formation in Diffusive Epidemic Spread
,”
IFACPapersOnLine
,
56
(
3
), pp.
463
468
.
14.
Singh
,
A. K.
,
Boltz
,
N.
,
Kumar
,
M.
, and
Ramakrishnan
,
S.
,
2024
, “
Turing-Type Instabilities and Pattern Formation Induced by Saturation Effects and Randomness in Nonlinear, Diffusive Epidemic Spread
,”
American Control Conference
,
Toronto, Canada
,
July 8–9
.
15.
Lehle
,
B.
, and
Peinke
,
J.
,
2018
, “
Analyzing a Stochastic Process Driven by Ornstein-Uhlenbeck Noise
,”
Phys. Rev. E
,
97
, p.
012113
.
16.
Van Kampen
,
N. G.
,
1992
,
Stochastic Processes in Physics and Chemistry
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
.
17.
Yang
,
Q.
,
Zhang
,
X.
, and
Jiang
,
D.
,
2022
, “
Dynamical Behaviors of a Stochastic Food Chain System With Ornstein–Uhlenbeck Process
,”
J. Nonlinear Sci.
,
32
(
34
), pp.
1
40
.
18.
Nabati
,
P.
,
2024
, “
Introducing a Novel Mean-Reverting Ornstein–Uhlenbeck Process Based Stochastic Epidemic Model
,”
Sci. Rep.
,
14
(
1867
), pp.
1
10
.
19.
Capasso
,
V.
, and
Serio
,
G.
,
1978
, “
A Generalization of the Kermack-McKendrick Deterministic Epidemic Model
,”
Math. Biosci.
,
42
(
1
), pp.
43
61
.
20.
Xiao
,
D.
, and
Ruan
,
S.
,
2007
, “
Global Analysis of an Epidemic Model With Nonmonotone Incidence Rate
,”
Math. Biosci.
,
208
(
2
), pp.
419
429
.
21.
Rohith
,
G.
, and
Devika
,
K. B.
,
2020
, “
Dynamics and Control of COVID-19 Pandemic With Nonlinear Incidence Rates
,”
Nonlinear Dyn.
,
101
(
6
), pp.
2013
2026
.
22.
Rohani
,
P.
,
Earn
,
D. J. D.
, and
Grenfell
,
B. T.
,
1999
, “
Opposite Patterns of Synchrony in Sympatric Disease Metapopulations
,”
Science
,
286
(
5441
), pp.
968
971
.
23.
Rohani
,
P.
,
Keeling
,
M.
, and
Grenfell
,
B.
,
2002
, “
The Interplay Between Determinism and Stochasticity in Childhood Diseases
,”
Am. Nat.
,
159
(
5
), pp.
469
481
.
24.
Yang
,
H.
,
Wang
,
Y.
,
Kundu
,
S.
,
Song
,
Z.
, and
Zhang
,
Z.
,
2022
, “
Dynamics of an SIR Epidemic Model Incorporating Time Delay and Convex Incidence Rate
,”
Res. Phys.
,
32
, p.
105025
.
25.
Bjørnstad
,
O. N.
,
Shea
,
K.
,
Krzywinski
,
M.
, and
Altman
,
N.
,
2020
, “
The SEIRS Model for Infectious Disease Dynamics
,”
Nat. Methods
,
17
, pp.
557
558
.
26.
Gumel
,
A. B.
, et al.,
2004
, “
Modelling Strategies for Controlling SARS Outbreaks
,”
Proc. R. Soc. Lond. B.
,
271
(
1554
), pp.
2223
2232
.
27.
Sancho
,
J. M.
,
Miguel
,
M. S.
,
Katz
,
S. L.
, and
Gunton
,
J. D.
,
1982
, “
Analytical and Numerical Studies of Multiplicative Noise
,”
Phys. Rev. A
,
26
, pp.
1589
1609
.
28.
Fox
,
R. F.
,
1986
, “
Uniform Convergence to an Effective Fokker-Planck Equation for Weakly Colored Noise
,”
Phys. Rev. A
,
34
, pp.
4525
4527
.
29.
Dutta
,
S.
,
Riaz
,
S. S.
, and
Ray
,
D. S.
,
2005
, “
Noise-Induced Instability: An Approach Based on Higher-Order Moments
,”
Phys. Rev. E
,
71
(
3
), p.
036216
.
30.
Sun
,
G.-Q.
,
2012
, “
Pattern Formation of an Epidemic Model With Diffusion
,”
Nonlinear Dyn.
,
69
, pp.
1097
1104
.
You do not currently have access to this content.